Biết rằng GTLN của hàm số y = ln^2x / x trên đoạn [1; e^3] là M = m/e^n. trong đó m, n là
25
01/05/2024
Biết rằng GTLN của hàm số \(y = \frac{{{{\ln }^2}x}}{x}\) trên đoạn \(\left[ {1;{e^3}} \right]\) là \(M = \frac{m}{{{e^n}}}\), trong đó m, n là các số tự nhiên. Tính \(S = {m^2} + 2{n^3}\)
A. \(S = 135\)
B. \(S = 24\)
C. \(S = 32\)
Trả lời
Đáp án C
Phương pháp:
Phương pháp tìm GTLN, GTNN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\)
+) Bước 1: Tính y’, giải phương trình \(y' = 0 \Rightarrow {x_i} \in \left[ {a;b} \right]\)
+) Bước 2: Tính các giá trị \(f\left( a \right);\,\,f\left( b \right);\,\,f\left( {{x_i}} \right)\)
+) Bước 3: So sánh và kết luận.
Cách giải:
\(y = \frac{{{{\ln }^2}x}}{x} \Rightarrow y' = \frac{{2\ln x.\frac{1}{x}.x - 1.{{\ln }^2}x}}{{{x^2}}} = \frac{{2\ln x - {{\ln }^2}x}}{{{x^2}}};\,\,\,y' = 0 \Leftrightarrow \left[ \begin{array}{l}\ln x = 0\\\ln x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = {e^2}\end{array} \right.\)
Bảng biến thiên:
GTLN của hàm số trên \(\left[ {1;{e^3}} \right]\) là \(M = \frac{4}{{{e^2}}} = \frac{m}{{{e^n}}} \Rightarrow m = 4,\,\,n = 2\)
\( \Rightarrow S = {m^2} + 2{n^3} = {4^2} + {2.2^3} = 16 + 16 = 32\)