Chứng minh rằng hai đường thẳng d: y = ax + b (a ≠ 0) và d': y = a'x + b' (a' ≠ 0) vuông góc với nhau khi và chỉ khi aa' = – 1
389
11/04/2023
Bài 7.11 trang 41 Toán 10 Tập 2: Chứng minh rằng hai đường thẳng d: y = ax + b (a ≠ 0) và d': y = a'x + b' (a' ≠ 0) vuông góc với nhau khi và chỉ khi aa' = – 1.
Trả lời
Ta có: y = ax + b ⇔ ax – y + b = 0 hay d: ax – y + b = 0 nên vectơ pháp tuyến của đường thẳng d là .
Lại có: y = a'x + b' ⇔ a'x – y + b' = 0 hay d': a'x – y + b' = 0 nên vectơ pháp tuyến của đường thẳng d' là .
Hai đường thẳng d và d' vuông góc với nhau khi
.
Vậy d ⊥ d' ⇔ aa' = – 1.