Trắc nghiệm Toán 10 Bài 25. Nhi thức Newton có đáp án

Trắc nghiệm Toán 10 Bài 25. Nhị thức Newton có đáp án

  • 164 lượt thi

  • 15 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Trong khai triển nhị thức (a + 2)n + 6 (n  ℕ). Có tất cả 17 số hạng. Vậy n bằng

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có trong khai triển (a + b)n có n + 1 số hạng.

Trong khai triển (a + 2)n + 6 (n  ℕ) có tất cả 17 số hạng nên ta có n + 6 = 16.

Vậy n = 10.


Câu 2:

Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (a + b)7 bằng

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có tổng số mũ của a, b trong mỗi hạng tử khi khai triển (a + b)n luôn bằng n.

Vậy tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (a + b)7 bằng 7.


Câu 3:

Biểu thức C97 (5x)2(-6y2)7 là một số hạng trong khai triển nhị thức nào dưới đây

Xem đáp án

Hướng dẫn giải.

Đáp án đúng là: C

Vì trong khai tiển (a + b)n thì trong mỗi số hạng tổng số mũ của a và b luôn bằng n Do đó, thay a = 5x, b = - 6y2 thì tổng số mũ của a và b bằng 9. Đáp án C đúng


Câu 4:

Số hạng tử trong khai triển (2x + y)6 bằng

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Ta có trong khai triển (a + b)n có n + 1 hạng tử.

Vậy trong khai triển (2x + y)6 có 7 hạng tử.


Câu 5:

Hệ số của x7 trong khai triển của (3 – x)9

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có công thức số hạng tổng quát trong khai triển (a + b)nCnkan – k .bk (k ≤ n)

Thay a = 3, b = - x và n = 9 vào trong công thức ta có C9k39 – k .(- x)k = (- 1)k C9k39 – k .(x)k

Vì tìm hệ số của x7 nên ta có xk = x7  k = 7

Hệ số của x7 trong khai triển là (-1)7C97.32 = - 324.


Câu 6:

Hệ số của x5 trong khai triển (1 + x)12 bằng

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có công thức số hạng tổng quát trong khai triển (a + b)nCnkan – k .bk (k ≤ n)

Thay a = 1, b = x và n = 12 vào trong công thức ta có C12k112 – k .(x)k = C12k112 – k .(x)k

Vì tìm hệ số của x5 nên ta có xk = x5  k = 5

Hệ số của x5 trong khai triển là C125.17 = 792.


Câu 7:

Trong khai triển nhị thức (2a – 1)6 ba số hạng đầu là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có khai triển

(2a – 1)6 = C60(2a)6(- 1)0 +  C61(2a)5(- 1)1 + C62(2a)4(- 1)2 + C63(2a)3(- 1)3 + C64(2a)2(- 1)4 + C65(2a)1(- 1)5 + C66(2a)0(- 1)6

= 64a6 – 192a5 + 240a4 – 160a3 + 60a2 – 12a + 1

Vậy 3 số hạng đầu của khai triển là 64a6 – 192a5 + 240a4


Câu 8:

Khai triển nhị thức (2x + y)5 ta được kết quả là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Khai triển nhị thức

(2x + y)5 = C50(2x)5(y)0 +  C51(2x)4(y)1 + C52(2x)3(y)2 + C53(2x)2(y)3 + C54(2x)(y)4 + C55(2x)0(y)5 = 32x5 + 80x4y + 80x3y2 + 40x2y3 + 10xy4 + y5 .


Câu 9:

Trong khai triển (3x – y)7 số hạng chứa x4y3 là:


Câu 10:

Trong khai triển x+8x29 số hạng không chứa x là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có x+8x29 Ta có công thức số hạng tổng quát trong khai triển (a + b)nCnkan – k .bk (k ≤ n)

Thay a = x, b = 8x2  vào trong công thức ta có

C9k(x)9 – k . = 8kC9kx9kx2k= 8kC9k x9-3k

Số hạng cần tìm không chứa x nên ta có 9 – 3k = 0

Vậy k = 3 thoả mãn bài toán

Khi đó hệ số cần tìm là (8)3C93 = 43008


Câu 11:

Trong khai triển (2x – 1)10 hệ số của số hạng chứa x8 là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Ta có công thức số hạng tổng quát trong khai triển (a + b)nCnkan – k .bk (k ≤ n)

Thay a = 2x, b = - 1 vào trong công thức ta có

C10k(2x)10 – k .(- 1)k = (-1)k(2)10-kC10k(x)10 – k

Số hạng cần tìm chứa x8 nên ta có 10 – k = 8

Vậy k = 2 thoả mãn bài toán

Khi đó hệ số cần tìm là (- 1)2(2)8C102 = 11520.


Câu 12:

Khai triển nhị thức (2x + 3)4 ta được kết quả là

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Khai triển nhị thức

(2x + 3)4 = C40(2x)4(3)0 +  C41(2x)3(3)1 + C42(2x)2(3)2 + C43(2x)1(3)3 + C44(2x)0(3)4 = 16x4 + 96x3 + 216x2 + 216x + 81.


Câu 15:

Với n là số nguyên dương thỏa mãn Cn1+Cn2=55, hệ số của x5 trong khai triển của biểu thức x3+2x2n bằng

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Ta có Cn1+Cn2=55

n!1!(n1)!+n!2!(n2)!=55 

n(n1)...1(n1)...1+n(n1)(n2)...12(n2)...1=55 

n+nn12=55

n2 + n – 110 = 0n=10n=11

Kết hợp với điều kiện n = 10 thoả mãn bài toán.

Nhị thức x3+2x2n

Ta có công thức số hạng tổng quát trong khai triển (a + b)nCnkan – k .bk (k ≤ n)

Thay a =x3, b = 2x2  vào trong công thức ta có

C10k(x3)10 – k2x2k = 2kC10kx303kx2k = (2)kC10k(x)30 – 5k

Số hạng cần tìm hệ số chứa x5  nên ta có 30 – 5k = 5

Vậy k = 5 thoả mãn bài toán

Vậy hệ số của số hạng chứa x5 trong khai triển là: (2)5C102 = 8064.


Bắt đầu thi ngay