Hoặc
16 câu hỏi
Bài 9.28 trang 69 SBT Toán 10 Tập 2. Một chiếc hộp đựng 6 quả cầu trắng, 4 quả cầu đỏ và 2 quả cầu đen. Chọn ngẫu nhiên 6 quả cầu. Tính xác suất để chọn được 3 quả trắng, 2 quả đỏ và 1 quả đen.
Bài 9.27 trang 69 SBT Toán 10 Tập 2. Có ba cặp vợ chồng, trong đó có hai vợ chồng ông bà An đến dự một bữa tiệc. Họ được xếp ngẫu nhiên ngồi xung quanh một chiếc bàn tròn. a) Không gian mẫu có bao nhiêu phần tử. Hai cách xếp chỗ ngồi quanh bàn tròn được coi là như nhau nếu đối với mỗi người A trong nhóm, trong hai cách xếp đó, người ngồi bên trái A và bên phải A không thay đổi. b) Tính xác suất để...
Bài 9.26 trang 69 SBT Toán 10 Tập 2. Hai thầy trò đến dự một buổi hội thảo. Ban tổ chức xếp ngẫu nhiên 6 đại biểu trong đó có hai thầy trò ngồi trên một chiếc ghế dài. Tính xác suất để hai thầy trò ngồi cạnh nhau.
Bài 9.25 trang 69 SBT Toán 10 Tập 2. Một cửa hàng bán ba loại kem. xoài, sô cô la và sữa. Một học sinh chọn mua ba cốc kem một cách ngẫu nhiên. Tính xác suất để ba cốc kem chọn được thuộc hai loại.
Bài 9.24 trang 69 SBT Toán 10 Tập 2. Gieo ba con xúc xắc cân đối. Tính xác suất để tổng số chấm xuất hiện trên ba con xúc xắc bằng 7.
Bài 9.23 trang 68 SBT Toán 10 Tập 2. Một khách sạn có 6 phòng đơn. Có 10 khách thuê phòng trong đó có 6 nam và 4 nữ. Người quản lí chọn ngẫu nhiên 6 người cho nhận phòng. a) Xác suất để cả 6 người là nam là A. 11210 ; B. 1105 ; C. 1210 ; D. 7210 . b) Xác suất để có 4 nam và 2 nữ là A. 27 ; B. 37 ; C. 47 ; D. 57 . c) Xác suất để có ít nhất 3 nữ là A. 1742 ; B. 2342 ; C. 2542 ; D. 1942 .
Bài 9.22 trang 68 SBT Toán 10 Tập 2. Gieo ba con xúc xắc cân đối và đồng chất. Xác suất để số chấm xuất hiện trên mặt của ba con xúc xắc khác nhau là A. 59 ; B. 49 ; C. 79 ; D. 29 .
Bài 9.21 trang 68 SBT Toán 10 Tập 2. Chọn ngẫu nhiên hai số từ tập hợp S = {1; 2; .;19} rồi nhân hai số đó với nhau. Xác suất để kết quả là một số lẻ là A. 919 ; B. 1019 ; C. 419 ; D. 519 .
Bài 9.20 trang 68 SBT Toán 10 Tập 2. Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là A. 522 ; B. 15 ; C. 29 ; D. 734 .
Bài 9.19 trang 68 SBT Toán 10 Tập 2. Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi được quay 3 lần. Xác suất để mũi tên dừng lại ở ba vị trí khác nhau là A. 3049 ; B. 2950 ; C. 35 ; D. 711 .
Bài 9.18 trang 68 SBT Toán 10 Tập 2. Một túi đựng 3 viên bi trắng và 5 viên bi đen. Chọn ngẫu nhiên 3 viên bi. Xác suất để trong 3 viên bi đó có cả bi trắng và bi đen là A. 1315 ; B. 911 ; C. 4356 ; D. 4556 .
Bài 9.17 trang 68 SBT Toán 10 Tập 2. Chọn ngẫu nhiên 5 học sinh trong một danh sách được đánh số thứ tự từ 1 đến 199. a) Xác suất để cả 5 học sinh được chọn có số thứ tự nhỏ hơn 100 xấp xỉ là A. 0,028; B. 0,029; C. 0,027; D. 0,026. b) Xác suất để cả 5 học sinh được chọn có số thứ tự lớn hơn 149 xấp xỉ là A. 0,00089; B. 0,00083; C. 0,00088; D. 0,00086.
Bài 9.16 trang 67 SBT Toán 10 Tập 2. Chọn ngẫu nhiên 5 số trong tập S = {1; 2;.; 20}. Xác suất để cả 5 số được chọn không vượt quá 10 xấp xỉ là A. 0,016; B. 0,013; C. 0,014; D. 0,015.
Bài 9.15 trang 67 SBT Toán 10 Tập 2. Gieo hai con xúc xắc cân đối. a) Xác suất để có đúng 1 con xúc xắc xuất hiện mặt 6 chấm là A. 1136 ; B. 13 ; C. 518 ; D. 49 . b) Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc nhỏ hơn hoặc bằng 7 là A. 1136 ; B. 712 ; C. 511 ; D. 49 .
Bài 9.14 trang 67 SBT Toán 10 Tập 2. Một cái túi đựng 3 viên bi đỏ, 5 viên bi xanh và 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để chọn được 3 viên bi màu đỏ là A. 1364 ; B. 114 ; C. 1182 ; D. 195 .
Bài 9.13 trang 67 SBT Toán 10 Tập 2. Xếp ngẫu nhiên ba bạn An, Bình, Cường đứng trên một hàng dọc. a) Xác suất để An không đứng cuối hàng là A. 23 ; B. 13 ; C. 35 ; D. 25 . b) Xác suất để Bình và Cường đứng cạnh nhau là A. 14 ; B. 23 ; C. 25 ; D. 12 . c) Xác suất để An đứng giữa Bình và Cường là A. 14 ; B. 23 ; C. 25 ; D. 12 . d) Xác suất để Bình đứng trước An là A. 23 ; B. 13 ; C. 35 ; D. 25 .
87.6k
54.7k
45.7k
41.7k
41.2k
38.4k
37.4k
36.2k
34.9k
33.4k