Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi

Bài 9.19 trang 68 SBT Toán 10 Tập 2: Mũi tên của bánh xe trong trò chơi “Chiếc nón kì diệu” có thể dừng lại ở một trong 7 vị trí. Người chơi được quay 3 lần. Xác suất để mũi tên dừng lại ở ba vị trí khác nhau là

A. 3049 ;

B. 2950 ;

C. 35 ;

D. 711 .

Trả lời

Đáp án đúng là: A

Quay ngẫu nhiên 3 lần, mỗi lần có thể dừng lại ở một trong 7 vị trí.

Do đó, n(Ω) = 7 . 7 . 7 = 343.

Gọi biến cố A: “mũi tên dừng lại ở ba vị trí khác nhau trong 3 lần quay”.

Lần quay thứ nhất có số cách chọn vị trí là: 7

Lần quay thứ hai có số cách chọn vị trí là: 6

Lần quay thứ ba có số cách chọn vị trí là: 5

Số cách để mũi tên dừng lại ở ba vị trí khác nhau là: 7 . 6 . 5 = 210 (cách)

Do đó, n(A) = 210.

Vậy P(A) = n(A)n(Ω)=210343=3049 .

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 25: Nhị thức Newton

Ôn tập chương 8

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Bài tập ôn tập cuối năm

Câu hỏi cùng chủ đề

Xem tất cả