Một khách sạn có 6 phòng đơn. Có 10 khách thuê phòng trong đó có 6 nam và 4 nữ. Người quản lí

Bài 9.23 trang 68 SBT Toán 10 Tập 2: Một khách sạn có 6 phòng đơn. Có 10 khách thuê phòng trong đó có 6 nam và 4 nữ. Người quản lí chọn ngẫu nhiên 6 người cho nhận phòng.

a) Xác suất để cả 6 người là nam là

A. 11210 ;

B. 1105 ;

C. 1210 ;

D. 7210 .

b) Xác suất để có 4 nam và 2 nữ là

A. 27 ;

B. 37 ;

C. 47 ;

D. 57 .

c) Xác suất để có ít nhất 3 nữ là

A. 1742 ;

B. 2342 ;

C. 2542 ;

D. 1942 .

Trả lời

Đáp án đúng là: (a) C; (b) B; (c) D

Chọn 6 người trong 10 người có số cách là: C106  = 210.

Do đó, n(Ω) = 210.

a)

Biến cố A: “6 người là nam”. Ta có:

Để chọn 6 người là nam có số cách là: C66  = 1

Do đó, n(A) = 1.

Vậy P(A) = n(A)n(Ω)=1210 .

b)

Biến cố B: “4 nam và 2 nữ”

Số cách chọn 4 nam là: C64  = 15

Số cách chọn 2 nữ là: C42  = 6

Do đó, theo quy tắc nhân, n(B) = 15 . 6 = 90.

Vậy P(B) = n(B)n(Ω)=90210=37 .

c)

Biến cố C: “có ít nhất 3 nữ”.

TH1: Có 3 bạn nữ, 3 bạn nam

Số cách chọn 3 bạn nữ là: C43  = 4

Số cách chọn 3 bạn nam là: C63  = 20

Số cách chọn 3 bạn nữ, 3 bạn nam là: 4 . 20 = 80.

TH2: Có 4 bạn nữ, 2 bạn nam

Số cách chọn 4 bạn nữ là: C44  = 1

Số cách chọn 2 bạn nam là: C62  = 15

Số cách chọn 4 bạn nữ, 2 bạn nam là: 1 . 15 = 15.

Theo quy tắc cộng, số cách chọn để có ít nhất 3 nữ là: 80 + 15 = 95, do đó, n(C) = 95.

Vậy P(C) = n(C)n(Ω)=95210=1942 .

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 25: Nhị thức Newton

Ôn tập chương 8

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Bài tập ôn tập cuối năm

Câu hỏi cùng chủ đề

Xem tất cả