Có ba cặp vợ chồng, trong đó có hai vợ chồng ông bà An đến dự một bữa tiệc. Họ được xếp ngẫu nhiên

Bài 9.27 trang 69 SBT Toán 10 Tập 2: Có ba cặp vợ chồng, trong đó có hai vợ chồng ông bà An đến dự một bữa tiệc. Họ được xếp ngẫu nhiên ngồi xung quanh một chiếc bàn tròn.

a) Không gian mẫu có bao nhiêu phần tử.

Hai cách xếp chỗ ngồi quanh bàn tròn được coi là như nhau nếu đối với mỗi người A trong nhóm, trong hai cách xếp đó, người ngồi bên trái A và bên phải A không thay đổi.

b) Tính xác suất để hai vợ chồng ông bà An ngồi cạnh nhau.

Trả lời

a)

Mỗi cách xếp chỗ ngồi quanh bàn tròn là một phần tử của không gian mẫu. Giả sử 6 chiếc ghế quanh bàn tròn được đánh số là 1, 2,…..6 và xi kí hiệu là người ngồi ở ghế mang số i. Khi đó, mỗi cách xếp 6 người này (x1, x2, x3, x4, x5, x6) cho ta một hoán vị của tập hợp 6 người. Có tất cả 6! cách xếp chỗ ngồi cho họ.

Vì ngồi xung quanh 1 chiếc bàn tròn nên 6 cách xếp sau đây được xem là giống nhau. Mặc dù số ghế họ ngồi có thay đổi nhưng vị trí tương đối giữa 6 người đó là không thay đổi.

(x1, x2, x3, x4, x5, x6); (x2, x3, x4, x5, x6, x1);  (x3, x4, x5, x6, x1, x2);

(x4, x5, x6, x1, x2, x3); (x5, x6, x1, x2, x3, x4); (x6, x1, x2, x3, x4, x5)

Vậy chỉ có 6! : 6 = 120 cách xếp. Do đó, n(Ω) = 120.

b)

Gọi E là biến cố: “Hai ông bà An ngồi cạnh nhau”.

Ta coi hai ông bà An ngồi chung 1 ghế. Như vậy có 5! : 5 = 4! = 24 cách xếp. Vì hai ông bà An có thể đổi chỗ cho nhau nên có 24.2! = 48 cách xếp để hai ông bà An ngồi cạnh nhau, do đó, n(E) = 48.

Vậy P(E) = n(E)n(Ω)=48120=25=0,4 .

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 25: Nhị thức Newton

Ôn tập chương 8

Bài 26: Biến cố và định nghĩa cổ điển của xác suất

Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển

Bài tập cuối chương 9

Bài tập ôn tập cuối năm

Câu hỏi cùng chủ đề

Xem tất cả