Giải SGK Toán 11 (Chân trời sáng tạo) Bài 1: Góc lượng giác

1900.edu.vn xin giới thiệu giải bài tập Toán lớp 11 Bài 1: Góc lượng giác sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 Bài 1. Mời các bạn đón xem:

Giải Toán 11 Bài 1: Góc lượng giác

Hoạt động khởi động trang 7 Toán 11 Tập 1: Mỗi hình dưới đây thể hiện chuyển động quay của một điểm trên bánh lái tàu từ vị trí A đến vị trí B. Các chuyển động này có điểm nào giống nhau, điểm nào khác nhau?

Hoạt động khởi động trang 7 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Sau bài học này ta sẽ trả lời được như sau:

Các chuyển động này có:

+) Điểm chung là: Đều chuyển động quay từ điểm A đến điểm B.

+) Điểm khác là: Góc lượng giác.

1. Góc lượng giác

Khái niệm góc lượng giác

Hoạt động khám phá 1 trang 7 Toán 11 Tập 1: Một chiếc bánh lái tàu có thể quay theo cả hai chiều. Trong Hình 1 và Hình 2, lúc đầu thanh OM ở vị trí OA.

a) Khi quay bánh lái ngược chiều kim đồng hồ (Hình 1), cứ mỗi giây, bánh lái quay một góc 60°. Bảng dưới dây cho ta góc quay α của thanh OM sau t giây kể từ lúc bắt đầu quay. Thay dấu ? bằng số đo thích hợp.

Thời gian t (giây)

1

2

3

4

5

6

Góc quay α

60°

120°

?

?

?

?

Hoạt động khám phá 1 trang 7 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Nếu bánh lái được quay theo chiều ngược lại, nghĩa là quay cùng chiều kim đồng hồ (Hình 2) với cùng tốc độ như trên, người ta ghi – 60° để chỉ góc mà thanh OM quay được sau mỗi giây. Bảng dưới đây cho ta góc quay α của thanh OM sau t giây kể từ lúc bắt đầu quay. Thay dấu ? bằng số đo thích hợp.

Thời gian t (giây)

1

2

3

4

5

6

Góc quay α

– 60°

– 120°

?

?

?

?

Hoạt động khám phá 1 trang 7 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

a) Vì cứ mỗi giây, bánh lái quay một góc 60° nên tương ứng ta có:

Với t = 1 (giây) thì α = 60°;

Với t = 2 (giây) thì α = 2.60° = 120°;

Với t = 3 (giây) thì α = 3.60° = 180°;

Với t = 4 (giây) thì α = 4.60° = 240°;

Với t = 5 (giây) thì α = 5.60° = 300°;

Với t = 6 (giây) thì α = 6.60° = 360°;

Khi đó ta có bảng:

Thời gian t (giây)

1

2

3

4

5

6

Góc quay α

60°

120°

180°

240°

300°

360°

b) Vì cứ mỗi giây, bánh lái quay một góc – 60° nên tương ứng ta có:

Với t = 1 (giây) thì α = – 60°;

Với t = 2 (giây) thì α = 2.(– 60°) = – 120°;

Với t = 3 (giây) thì α = 3.(– 60°) = – 180°;

Với t = 4 (giây) thì α = 4.(– 60°) = – 240°;

Với t = 5 (giây) thì α = 5.(– 60°) = – 300°;

Với t = 6 (giây) thì α = 6.(– 60°) = – 360°;

Khi đó ta có bảng:

Thời gian t (giây)

1

2

3

4

5

6

Góc quay α

– 60°

– 120°

– 180°

– 240°

– 300°

– 360°

Thực hành 1 trang 9 Toán 11 Tập 1: Cho MON^=60°. Xác định số đo của các góc lượng giác được biểu diễn trong Hình 6 và viết công thức tổng quát của số đo góc lượng giác (OM, ON).

Thực hành 1 trang 9 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Số đo góc lượng giác (OM, ON) trong Hình 6a là 60°.

Số đo góc lượng giác (OM, ON) trong Hình 6b là 2.360° + 60° = 780°.

Số đo góc lượng giác (OM, ON) trong Hình 6c là – (360° – 60°) = –300°.

Vận dụng 1 trang 9 Toán 11 Tập 1: Trong các khoảng thời gian từ 0 giờ đến 2 giờ 15 phút, kim phút quét một góc lượng giác bao nhiêu độ?

Lời giải:

Vận dụng 1 trang 9 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Từ 0 giờ đến 2 giờ, kim phút quay được 2 vòng tròn tương ứng với quét một góc: 2.360° = 720°.

Còn 15 phút còn lại kim phút quay quét thêm một góc lượng giác là: 90°.

Vì vậy từ 0 giờ đến 2 giờ 15 phút, kim phút quét một góc lượng giác: 720° + 90° = 810°.

Hệ thức Chasles (Sa-lơ)

Hoạt động khám phá 2 trang 9 Toán 11 Tập 1: Cho Hình 7:

Hoạt động khám phá 2 trang 9 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Xác định số đo các góc lượng giác (Oa, Ob), (Ob, Oc) và (Oa, Oc).

b) Nhận xét về mối liên hệ giữa ba số đo góc này.

Lời giải:

a) Số đo của góc lượng giác (Oa, Ob) có tia đầu là Oa và tia cuối là Ob là 135°.

Số đo của góc lượng giác (Ob, Oc) có tia đầu là Ob và tia cuối là Oc là – 80°.

Ta có: aOc^=aOb^bOc^=135°80°=55°.

Khi đó số đo của góc lượng giác (Oa, Oc) có tia đầu là Oa và tia cuối là Oc là 55° + 360° = 415°.

b) Ta có: 135° + (– 80°) = 415° – 360°.

Vậy (Oa, Ob) + (Ob, Oc) = (Oa, Oc) – 360°.

Vận dụng 2 trang 9 Toán 11 Tập 1: Trong Hình 8, chiếc quạt có ba cánh được phân bố đều nhau. Viết công thức tổng quát số đo của góc lượng giác (Ox, ON) và (Ox, OP).

Vận dụng 2 trang 9 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Chiếc quạt có ba cạnh được phân bố đều nhau nên MON^=NOP^=POM^=120°.

+) Với ba tia OM, Ox và ON, ta có:

(Ox, OM) + (OM, ON) = (Ox, ON) + k1360° (k1  ℤ)

 (Ox, ON) = (Ox, OM) + (OM, ON) – k1360°

 (Ox, ON) = 120° + (– 50°) – k1360°

 (Ox, ON) = 70° – k1360°.

+) Với ba tia Ox, ON, OP, ta có:

(Ox, ON) + (ON, OP) = (Ox, OP) + k2360° (k2  ℤ)

 (Ox, OP) = (Ox, ON) + (ON, OP) – k2360°

 (Ox, OP) = 70° – k1360° + 120° – k2360°

 (Ox, OP) = 190° – (k1 + k2) 360°

 (Ox, OP) = 190° – k 360° (với k = k1 + k2).

2. Đơn vị radian

Hoạt động khám phá 3 trang 10 Toán 11 Tập 1: Vẽ đường tròn tâm O bán kính R bất kì. Dùng một đoạn dây mềm đo bán kính và đánh dấu được một cung Hoạt động khám phá 3 trang 10 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 có độ dài đúng bằng R (Hình 9). Đo và cho biết AOB^ có số đo bằng bao nhiêu độ.

Hoạt động khám phá 3 trang 10 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Hoạt động khám phá 3 trang 10 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Tiến hành đo góc AOB^ ta được AOB^=58°.

3. Đường tròn lượng giác

Thực hành 2 trang 11 Toán 11 Tập 1: Hoàn thành bảng chuyển đổi đơn vị đo của các góc sau đây:

Số đo theo độ

?

45°

60°

?

120°

?

150°

180°

Số đo theo rad

0 rad

π6rad

?

?

π2 rad

?

3π4 rad

?

π rad

Lời giải:

Ta có:

0°=π.0°180°=0 rad;

Thực hành 2 trang 11 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

180°=π.180°180°=π rad.

Số đo theo độ

30°

45°

60°

90°

120°

135°

150°

180o

Số đo theo rad

0 rad

π6 rad

π4 rad

π3 rad

π2 rad

2π3 rad

3π4rad

5π6rad

π rad

Hoạt động khám phá 4 trang 11 Toán 11 Tập 1: Trong mặt phẳng tọa độ Oxy, vẽ đường tròn tâm O bán kính bằng 1 và điểm A(1; 0).

a) Cho điểm B(0; 1). Số đo góc lượng giác (OA, OB) bằng bao nhiêu radian?

b) Xác định các điểm A’ và B’ trên đường tròn sao cho các góc lượng giác (OA, OA’) và (OA, OB’) có số đo lần lượt là π và π2.

Lời giải:

Ta có hình vẽ:

Hoạt động khám phá 4 trang 11 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Ta có: Số đo góc lượng giác (OA, OB) bằng 90°.

b) Điểm A’ là điểm nằm trên đường tròn lượng giác thỏa mãn (OA, OA’) bằng π. Khi đó ta có hình vẽ:

Hoạt động khám phá 4 trang 11 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Điểm B’ là điểm nằm trên đường tròn lượng giác thỏa mãn (OA, OB’) bằng π2. Khi đó ta có hình vẽ:

Hoạt động khám phá 4 trang 11 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Thực hành 3 trang 12 Toán 11 Tập 1: Biểu diễn trên đường tròn lượng giác các góc lượng giác có số đo là:

a) – 1 485°;

b) 19π4.

Lời giải:

a) Ta có: – 1 485° = – 45° + ( – 4).360°.

Biểu diễn góc trên đường tròn lượng giác ta được:

Thực hành 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Ta có: 19π4=2π+3π4

Biểu diễn góc trên đường tròn lượng giác ta được:

Thực hành 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài tập

Bài 1 trang 12 Toán 11 Tập 1: Đổi số đo của các góc dưới đây sang radian:

a) 38°;

b) – 115°;

c) 3πο.

Lời giải:

a) Ta có: 38° = π.38180=19π90 rad;

b) – 115° = π.115180=23π36 rad;

c) 3πο=π.3π180=160 rad.

Bài 2 trang 12 Toán 11 Tập 1: Đổi số đo của các góc sau đây sang độ:

a) π12;

b) – 5;

c) 13π9.

Lời giải:

a) Ta có: π12 rad = π12.180π=15°.

b) Ta có: – 5 rad = 5.180π=900πο;

c) Ta có: 13π9 rad = 13π9.180π=26°.

Bài 3 trang 12 Toán 11 Tập 1: Biểu diễn các góc lượng giác sau trên đường tròn lượng giác:

a) 17π3;

b) 13π4;

c) – 765°.

Lời giải:

a) Ta có: 17π3=2.2ππ2π3

Vì vậy điểm biếu diễn góc lượng giác có số đo 17π3 là điểm nằm trên phần đường tròn lượng giác thuộc góc phần tư thứ I sao cho A'OM^=2π3 hay A'OM^=120°.

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Ta có: 13π4=2π+π+π4

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

c) Ta có: – 765° = (– 2).360° – 45°

Biểu diễn góc này trên đường tròn lượng giác ta được:

Bài 3 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 4 trang 12 Toán 11 Tập 1: Góc lượng giác 31π7 có cùng điểm biểu diễn trên đường tròn lượng giác với góc lượng giác nào dưới đây?

3π7;10π7;25π7.

Lời giải:

Hai góc lượng giác α và β có cùng điểm biểu diễn trên đường tròn lượng giác khi tồn tại số nguyên k khác 0 thỏa mãn: α = k.2π + β

Ta có:

Bài 4 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (thỏa mãn) nên có cùng điểm biểu diễn với góc lượng giác 3π7;

Bài 4 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (không thỏa mãn) nên không có cùng điểm biểu diễn với góc lượng giác 10π7;Bài 4 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (thỏa mãn) nên có cùng điểm biểu diễn với góc lượng giác 25π7.

Bài 5 trang 12 Toán 11 Tập 1: Viết các công thức số đo tổng quát của các góc lượng giác (OA, OM) và (OA, ON) trong Hình 14.

Bài 5 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Công thức số đo tổng quát của các góc lượng giác (OA, OM) là:

(OA, OM) = 120° + k360° (k  ℤ).

Công thức số đo tổng quát của các góc lượng giác (OA, ON) là:

(OA, ON) = – 75° + k360° (k  ℤ).

Bài 6 trang 12 Toán 11 Tập 1: Trong Hình 15, mâm bánh xe ô tô được chia thành năm phần bằng nhau. Viết công thức số đo tổng quát của góc lượng giác (Ox, ON).

Bài 6 trang 12 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Vì bánh ô tô được chia làm 5 phần đều nhau nên mỗi phần sẽ có số đo góc là: 360° : 5 = 72°. Góc MON chiếm 2 phần nên có số đo góc là 2.72° = 144°.

Khi đó xON^=MON^xOM^=72°45°=27°.

Vậy công thức số đo tổng quát của góc lượng giác (Ox, ON) = 27° + k.360°.

Bài 7 trang 13 Toán 11 Tập 1: Trên đường tròn lượng giác hãy biểu diễn các góc lượng giác có số đo có dạng là:

a) π2+kπk;

b) kπ4k.

Lời giải:

a) Với k = 0 thì có góc lượng giác có số đo góc là π2, được biểu diễn bởi điểm M;

Với k = 1 thì có góc lượng giác có số đo góc là π2+π=3π2, được biểu diễn bởi điểm N;

Với k = 2 thì có góc lượng giác có số đo góc là π2+2π nên cũng được biểu diễn bởi điểm M;

Với k = 3 thì có góc lượng giác có số đo góc là π2+3π=3π2+2π nên cũng được biểu diễn bởi điểm N.

Vậy với k chẵn thì các góc lượng giác có số đo dạng π2+kπk được biểu diễn bởi điểm M, với k lẻ thì các góc lượng giác có số đo dạng π2+kπk được biểu diễn bởi điểm N khi đó ta có hình vẽ sau:

Bài 7 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

b) Với k = 0 thì có góc lượng giác có số đo góc là 0, được biểu diễn bởi điểm A;

Với k = 1 thì có góc lượng giác có số đo góc là π4, được biểu diễn bởi điểm M;

Với k = 2 thì có góc lượng giác có số đo góc là 2π4=π2 được biểu diễn bởi điểm B;

Với k = 3 thì có góc lượng giác có số đo góc là 3π4 được biểu diễn bởi điểm N;

Với k = 4 thì có góc lượng giác có số đo góc là 4π4=π được biểu diễn bởi điểm A’;

Với k = 5 thì có góc lượng giác có số đo góc là 5π4 được biểu diễn bởi điểm M’;

Với k = 6 thì có góc lượng giác có số đo góc là 6π4=3π2 được biểu diễn bởi điểm B’;

Với k = 7 thì có góc lượng giác có số đo góc là 7π4 được biểu diễn bởi điểm N’;

Với k = 8 thì có góc lượng giác có số đo góc là 8π4=2π+0 nên được biểu diễn bởi điểm A;

Vậy các góc lượng giác có số đo dạng π2+kπk được biểu diễn bởi các điểm A, M, B, N, A’, M’, B’, N’. Khi đó ta có hình vẽ sau:

Bài 7 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 8 trang 13 Toán 11 Tập 1: Vị trí các điểm B, C, D trên cánh quạt động cơ máy bay trong Hình 16 có thể biểu diễn cho các góc lượng giác nào sau đây?

Bài 8 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Bài 8 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

+) Xét các góc lượng giác có số đo π2+kπk

Với k chẵn ta có các góc lượng giác có số đo π2+kπk được biểu diễn bởi điểm B;

Với k lẻ ta có các góc lượng giác có số đo π2+kπk được biểu diễn bởi điểm B’(0; – 1).

Vì vậy các điểm B, C, D không thể biểu diễn cho các góc lượng giác có số đo π2+kπk.

+) Xét các góc lượng giác có số đo π6+k2π3k

Với k = 0 ta có góc lượng giác có số đo π6 được biểu diễn bởi điểm D.

Với k = 1 ta có góc lượng giác có số đo π6+2π3=π2 được biểu diễn bởi điểm B.

Với k = 2 ta có góc lượng giác có số đo π6+2.2π3=7π6 được biểu diễn bởi điểm C.

Với k = 3 ta có góc lượng giác có số đo π6+3.2π3=π6+2π được biểu diễn bởi điểm D.

Vì vậy các góc lượng giác có số đo π6+k2π3k được biểu diễn bởi các điểm B, C, D.

+) Xét các góc lượng giác có số đo π2+kπ3k

Với k = 0 ta có góc lượng giác có số đo π2 được biểu diễn bởi điểm B.

Với k = 1 ta có góc lượng giác có số đo π2+π3=5π6 được biểu diễn bởi điểm M.

Với k = 2 ta có góc lượng giác có số đo π2+2π3=7π6 được biểu diễn bởi điểm C.

Với k = 3 ta có góc lượng giác có số đo π2+3π3=3π2 được biểu diễn bởi điểm B’.

Với k = 4 ta có góc lượng giác có số đo π2+4π3=11π6=π6+2π được biểu diễn bởi điểm D.

Với k = 5 ta có góc lượng giác có số đo π2+5π3=13π6=π6+2π được biểu diễn bởi điểm N.

Với k = 6 ta có góc lượng giác có số đo π2+6π3=π2+2π được biểu diễn bởi điểm B.

Ví vậy các điểm B, C, D không thể biểu diễn cho các góc lượng giác có số đo là π2+kπ3k.

Bài 9 trang 13 Toán 11 Tập 1: Hải lí là một đơn vị chiều dài hàng hải, được tính bằng độ dài một cung chắn một góc α=160ο của đường kinh tuyến (Hình 17). Đổi số đo α sang radian và cho biết 1 hải lí bằng khoảng bao nhiêu ki lô mét, biết bán kính trung bình của Trái Đất là 6 371 km. Làm tròn kết quả hàng phần trăm.

Bài 9 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Ta có: Bài 9 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Độ dài cung chắn góc α là: α.R = π10800.6 371  1,85 km.

Vậy 1 hải lí bằng 1,85 km.

Hoạt động khởi động trang 13 Toán 11 Tập 1: Hình bên biểu diễn xích đu IA có độ dài 2m dao động quanh trục IO vuông góc với trục Ox trên mặt đất và A’ là hình chiếu của A lên Ox. Tọa độ s của A’ trên trục Ox được gọi là li độ của A và (IO, IA) = α được gọi là li độ góc của A. Làm cách nào để tính li độ dựa vào li độ góc?

Hoạt động khởi động trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Kẻ AH vuông góc với IO tại H

Hoạt động khởi động trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xét tam giác AHI vuông tại H, có:

AH = sinα . IA = 2sinα (m).

AH cũng chính là li độ của A nên s = 2sinα.

Hoạt động khám phá 1 trang 13 Toán 11 Tập 1: Trong Hình 1, M và N là điểm biểu diễn của các góc lượng giác 2π3  π4 trên đường tròn lượng giác. Xác định tọa độ của M và N trong hệ trục tọa độ Oxy.

Hoạt động khám phá 1 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Gọi H, K lần lượt là hình chiếu của điểm M xuống trục Ox và Oy; gọi E, F lần lượt là hình chiếu của điểm N trên trục Ox và Oy.

Hoạt động khám phá 1 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Đặt (OA, OM) = α, (OA, ON) = β.

+) Xét tam giác MHO vuông tại H, có:

MH = sinMOH^.MO = sinMOH^

Ta có MOH^+AOM^=180° nên sinMOH^ = sinAOM^.

 MH = sinAOM^ = sinα.

Mà MH = OK nên OK = sinα hay tung độ điểm M bằng sinα.

Ta lại có: OH = cosMOH^.MO = cosMOH^

 MOH^+AOM^=180° nên cosMOH^ = -cosAOM^

 OH = -cosAOM^ = – cosα do đó hoành độ của điểm M bằng cosα.

Vậy tọa độ điểm M là (cosα; sinα) = cos2π3;sin2π3=12;32.

+) Xét tam giác ONE vuông tại E, có:

NE = sinNOE^.ON = sinNOE^

 NOE^= -β

 NE = – sinβ.

Mà NE = OF nên OF = – sinβ do đó tung độ điểm N bằng sinβ.

Ta lại có: OE = cosNOE^.ON = cosNOE^

 OE = cosβ nên hoành độ của điểm M bằng cosβ.

Vậy tọa độ điểm N là

(cosβ; sinβ) = Hoạt động khám phá 1 trang 13 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giá trị lượng giác của một góc lượng giác

Bài 3: Các công thức lượng giác

Bài 4: Hàm số lượng giác và đồ thị giác

Bài 5: Phương trình lượng giác

Bài tập cuối chương 1

 

  •  

Câu hỏi liên quan

Vậy 1 hải lí bằng 1,85 km.
Xem thêm
Số đo góc lượng giác (OM, ON) trong Hình 6a là 60°. Số đo góc lượng giác (OM, ON) trong Hình 6b là 780°. Số đo góc lượng giác (OM, ON) trong Hình 6c là –300°.
Xem thêm
Vì vậy từ 0 giờ đến 2 giờ 15 phút, kim phút quét một góc lượng giác: 810°.
Xem thêm
Vậy công thức số đo tổng quát của góc lượng giác (Ox, ON) = 27° + k.360°.
Xem thêm
Tiến hành đo góc AOB ta được góc AOB= 58 độ
Xem thêm
+) Điểm chung là: Đều chuyển động quay từ điểm A đến điểm B. +) Điểm khác là: Góc lượng giác.
Xem thêm
Xem tất cả hỏi đáp với chuyên mục: Góc lượng giác
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!