Sách bài tập Toán lớp 11 Bài 22: Hai đường thẳng vuông góc
Lời giải:
Vì ABCD là hình bình hành nên BC // AD. Do đó (BC, SA) = (AD, SA) = ^SAD.
Do tam giác SAD đều nên ^SAD = 60o .
Vậy góc giữa hai đường thẳng BC và SA bằng 60°.
Vì ABCD là hình bình hành nên BC // AD. Do đó (BC, SM) = (AD, SM).
Vì M là trung điểm của AD nên SM là đường trung tuyến.
Xét tam giác đều SAD có SM là đường trung tuyến nên SM là đường cao.
Do đó SM ⊥ AD hay (AD, SM) = 90°.
Vậy góc giữa hai đường thẳng BC và SM bằng 90°.
Lời giải:
Vì hình hộp ABCD.A'B'C'D' có tất cả các cạnh bằng nhau nên ABCD là hình thoi, suy ra AC ⊥ BD.
Mà A'C' // AC nên (A'C', BD) = (AC, BD) = 90°.
Vậy góc giữa hai đường thẳng A'C' và BD bằng 90°.
Vì BB' // AA' nên (AD, BB') = (AD, AA') = 180o - A' = 180o - 120o = 60o.
Vậy góc giữa hai đường thẳng AD và BB' bằng 60°.
Vì BB' // AA' nên (A'D, BB') = (A'D, AA') = .
Vì hình hộp ABCD.A'B'C'D' có tất cả các cạnh bằng nhau nên ADD'A' là hình thoi, suy ra A'D là đường phân giác của góc AA'D'.
Xét hình thoi ADD'A' có = 120o nên = 180o - 120o = 60o.
Mà A'D là đường phân giác của góc AA'D' nên = = 30o.
Vậy góc giữa hai đường thẳng A'D và BB' bằng 30°.
Lời giải:
Lấy K là trung điểm của BC.
Xét tam giác BCD có N là trung điểm BD, K là trung điểm BC nên NK là đường trung bình. Do đó NK // CD và NK = = a.
Xét tam giác ABC có M là trung điểm AC, K là trung điểm BC nên MK là đường trung bình. Do đó MK // AB và MK = = a.
Có MN2 = 3a2 ; NK2 + MK2 = a2 + = 3a2.
Do đó MN2 = NK2 + MK2 nên tam giác MNK là tam giác vuông tại K hay NK MK.
Lại có MK // AB, NK // CD nên (AB, CD) = (MK, NK) = 90° hay AB CD.
a) Tính góc giữa các cặp đường thẳng sau: MN và SD; MO và SB.
b) Tính tang của góc giữa hai đường thẳng SN và BC.
Lời giải:
a) Hình chóp S.ABCD có tất cả các cạnh bằng a và đáy ABCD là hình vuông nên
SA = SB = SC = SD = AB = BC = CD = DA = a.
Xét tam giác ADB vuông tại A, có BD2 = AD2 + AB2 = a2 + a2 = 2a2.
Mà SB2 + SD2 = a2 + a2 = 2a2. Do đó SB2 + SD2 = BD2 nên tam giác SBD vuông tại S.
Vì M, N lần lượt là trung điểm của cạnh SA, AB nên MN là đường trung bình của tam giác SAB, do đó MN // SB.
Khi đó (MN, SD) = (SB, SD) = 90°.
Vì O là giao điểm của AC và BD, ABCD là hình vuông nên O là trung điểm AC, BD.
Xét tam giác SAC có M là trung điểm SA, O là trung điểm AC nên MO là đường trung bình, suy ra MO // SC.
Khi đó (MO, SB) = (SC, SB) = = 60o (do tam giác SBC là tam giác đều).
b) Xét tam giác ABC có O là trung điểm AC, N là trung điểm AB nên ON là đường trung bình, suy ra ON // BC.
Vì ON // BC nên (SN, BC) = (SN, ON) = .
Vì tam giác SAC có SA = SC = a nên tam giác SAC cân tại S mà SO là trung tuyến nên SO là đường cao.
Vì BD2 = 2a2 và ABCD là hình vuông nên AC = BD = a AO = OC = .
Xét tam giác SOC vuông tại O, có:
SC2 = SO2 + OC2 a2 = SO2 + SO = .
Vì ON là đường trung bình của tam giác ABC nên ON = .
Xét tam giác đều SAB có SN là trung tuyến đồng thời là đường cao hay SN AB.
Xét tam giác vuông SNB vuông tại N, ta có:
SN2 + NB2 = SB2 SN2 + = a2 SN2 =
Lại có SO2 + ON2 = + = . Do đó tam giác SON vuông tại O.
Xét tam giác vuông SON vuông tại O có tan = = .
Vậy tang của góc giữa hai đường thẳng SN và BC là .
Lời giải:
Gọi A, B là hai điểm tại hai vị trí chân thang và C, D là hai điểm tại hai vị trí ngọn thang, EF là đường chân tường.
Ta có EF // AB nên (EF, AC) = (AB, AC) = .
Kẻ CH AB tại H, DK AB tại K.
Ta có CDKH là hình chữ nhật nên CH = DK, CD = HK.
Xét CHA và DKB có
CA = DB, = 90o , CH = DK nên CHA = DKB (c – g – c).
Suy ra AH = KB.
Khi đó AH = = 10 (cm) = 0,1 (m).
Vì tam giác ACH vuông tại H nên cos 89,05o.
Do đó, 89,05o.
Vậy góc tạo giữa đường thẳng chân tường và cạnh cột thang khoảng 89,05°.
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác: