Giải SBT Toán lớp 11 Bài 21: Phương trình, bất phương trình mũ và lôgarit
Bài 6.31 trang 19 SBT Toán 11 Tập 2: Giải các phương trình mũ sau:
Lời giải:
a) Ta có: 42x – 1 = 8x + 3 22(2x – 1) = 23(x + 3)
2(2x – 1) = 3(x + 3) 4x – 2 = 3x + 9 x = 11.
Vậy phương trình có nghiệm là x = 11.
b) Ta có:
.
Vậy tập nghiệm của phương trình là .
c) Ta có:
.
Vậy tập nghiệm của phương trình là S = {−6; 2}.
d) 52x – 1 = 20 2x – 1 = log5 20 2x = log5 20 + 1 .
Vậy nghiệm của phương trình là .
Bài 6.32 trang 19 SBT Toán 11 Tập 2: Giải các phương trình lôgarit sau:
a) log3 (4x – 1) = 2; b) log2 (x2 – 1) = log2 (3x + 3);
c) logx 81 = 2; d) log2 8x = −3.
Lời giải:
a) Điều kiện: 4x – 1 > 0 .
Ta có: log3 (4x – 1) = 2 4x – 1 = 32 4x – 1 = 9 4x = 10 (thỏa mãn điều kiện).
Vậy nghiệm của phương trình là .
b) Điều kiện:
Ta có: log2 (x2 – 1) = log2 (3x + 3) x2 – 1 = 3x + 3 x2 – 3x – 4 = 0
(x + 1)(x – 4) = 0 x = −1 (loại) hoặc x = 4 (thỏa mãn).
Vậy nghiệm của phương trình là x = 4.
c) Điều kiện: 0 < x ≠ 1.
Ta có: logx 81 = 2 81 = x2 x = 9 (thỏa mãn) hoặc x = −9 (loại).
Vậy nghiệm của phương trình là x = 9.
d) Ta có: log2 8x = −3 8x = 2−3 23x = 2−3 3x = −3 x = −1.
Vậy nghiệm của phương trình là x = −1.
Bài 6.33 trang 19 SBT Toán 11 Tập 2: Giải các bất phương trình mũ sau:
c) 25x ≤ 54x − 3 ; d) 9x – 3x – 6 ≤ 0.
Lời giải:
a)
Vậy nghiệm của bất phương trình là .
b)
Vậy tập nghiệm của bất phương trình là [2; 3].
c) 25x ≤ 54x − 3 52x ≤ 54x − 3 2x ≤ 4x – 3 2x ≥ 3 x ≥ 1,5.
Vậy tập nghiệm của bất phương trình là [1,5; +).
d) Đặt 3x = t (t > 0).
Khi đó bất phương trình trở thành t2 – t – 6 ≤ 0 (t – 3)(t + 2) ≤ 0 −2 ≤ t ≤ 3.
Mà t > 0 nên ta có 0 < t ≤ 3.
Khi đó, ta có 3x ≤ 3 x ≤ 1.
Vậy tập nghiệm của bất phương trình là (−; 1].
Bài 6.34 trang 19 SBT Toán 11 Tập 2: Giải các bất phương trình lôgarit sau:
a) log3 (2x + 1) ≥ 2; b) log2 (3x – 1) < log2 (9 – 2x);
c) ; d) log2 (2x – 1) ≤ log4 (x + 1)2.
Lời giải:
a) Điều kiện .
Ta có log3 (2x + 1) ≥ 2 2x + 1 ≥ 32 2x + 1 ≥ 9 2x ≥ 8 x ≥ 4.
Kết hợp với điều kiện, ta được x ≥ 4.
Vậy tập nghiệm của bất phương trình là [4; +).
b) Điều kiện .
Ta có:
log2 (3x – 1) < log2 (9 – 2x)
3x – 1 < 9 – 2x
3x + 2x < 9 + 1
5x < 10 x < 2.
Kết hợp với điều kiện, ta được .
Vậy tập nghiệm của bất phương trình là .
c) Điều kiện: .
Ta có:
.
Kết hợp điều kiện, ta có: .
Vậy tập nghiệm của bất phương trình là .
d) Điều kiện: .
Ta có:
.
Kết hợp với điều kiện, ta có: .
Vậy tập nghiệm của bất phương trình là .
Bài 6.35 trang 19 SBT Toán 11 Tập 2: Tìm tập xác định của các hàm số sau:
Lời giải:
a) Điều kiện: 3x – 9 ≠ 0 3x ≠ 9 3x ≠ 32 x ≠ 2.
Vậy tập xác định của hàm số là ℝ\{2}.
b) Điều kiện: 4 – x2 > 0 (2 – x)(2 + x) > 0 −2 < x < 2.
Vậy tập xác định của hàm số là (−2; 2).
c) Điều kiện: .
Vậy tập xác định của hàm số là (−; 5).
d) Điều kiện:
Vậy tập xác định của hàm số là (1; +)\{2}.
a) Một máy bay đang chịu áp suất khí quyển 320 mmHg. Tìm độ cao của máy bay đó.
Lời giải:
a) Một máy bay đang chịu áp suất khí quyển 320 mmHg tức là p = 320 thay vào công thức p(h) = 760.e−0,145h ta được:
760.e−0,145h = 320 e−0,145h = 320 : 760
(km).
Vậy máy bay ở độ cao khoảng 5,965 km.
b) Một người đứng trên đỉnh của một ngọn núi và chịu áp suất khí quyển 667 mmHg tức p = 667 thay vào công thức p(h) = 760.e−0,145h ta được: 760.e−0,145h = 667
(km).
Vậy chiều cao của ngọn núi khoảng 0,9 km.
a) Theo mô hình này, khi nào chiếc xe có giá trị 500 triệu đồng?
b) Theo mô hình này, khi nào chiếc xe có giá trị 200 triệu đồng?
(Kết quả của câu a và câu b được tính tròn năm).
Lời giải:
a) Chiếc xe có giá trị 500 triệu đồng tức là V = 500 thay vào công thức
V(t) = 730 . (0,82)t ta được 500 = 730 . (0,82)t (năm).
Vậy chiếc xe có giá trị 500 triệu đồng sau khoảng 2 năm.
b) Chiếc xe có giá trị 200 triệu đồng tức là V = 200 thay vào công thức
V(t) = 730 . (0,82)t ta được 200 = 730 . (0,82)t (năm).
Vậy chiếc xe có giá trị 200 triệu đồng sau khoảng 7 năm.
Lời giải:
Chi phí hoạt động của công ty đó vào năm thứ 10 là:
C(10) = 90 – 50e−10 89,998 (tỉ đồng).
Vậy chi phí hoạt động của công ty đó vào năm thứ 10 sau khi thành lập khoảng 89,998 tỉ đồng.
Lời giải:
Vì máu của người bình thường có độ pH từ 7,30 đến 7,45 nên 7,30 ≤ −log[H+] ≤ 7,45 −7,45 ≤ log[H+] ≤ −7,30
10−7,45 ≤ [H+] ≤ 10−7,30
3,55.10−8 ≤ [H+] ≤ 5,01.10−8.
Vậy nồng độ ion hydrogen trong máu người bình thường nhận giá trị trong đoạn [3,55.10−8 ; 5,01.10−8].
a) Tính cường độ âm của âm thanh tàu điện ngầm có mức cường độ âm là 100 dB.
Lời giải:
a) Âm thanh tàu điện ngầm có mức cường độ âm là 100 dB tức là L = 100 thay vào công thức ta được:
(W/m2).
Vậy cường độ âm của âm thanh tàu điện ngầm có mức cường độ âm 100 dB là 0,01 W/m2.
b) Âm thanh trên một tuyến đường giao thông có mức cường độ âm thay đổi từ 70 dB đến 85 dB tức là
.
Vậy cường độ âm thay đổi trong đoạn [10−5; 10−3,5].
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác: