Giải Sách bài tập Toán 10 Bài 2: Tập hợp. Các phép toán trên tập hợp
Giải SBT Toán 10 trang 14 Tập 1
Bài 18 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {x ∈ ℕ| x ≤ 4}. A là tập hợp nào sau đây?
A. {0; 1; 2; 3; 4};
B. (0; 4];
C. {0; 4};
D. {1; 2; 3; 4}.
Lời giải:
Đáp án đúng là A
Các phần tử thuộc tập hợp A là các số tự nhiên thỏa mãn bé hơn hoặc bằng 4. Do đó A = {0; 1; 2; 3; 4}.
A. {0; 1; 2; 3; 4; 5; 6};
B. {3; 4};
C. {0; 1; 2};
D. {5; 6}.
Lời giải:
Đáp án đúng là A
Tập hợp A∪B gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp B nên A∪B = {0; 1; 2; 3; 4; 5; 6}.
A. {0; 1; 2; 3; 4; 5; 6};
B. {3; 4};
C. {0; 1; 2};
D. {5; 6}.
Lời giải:
Đáp án đúng là C
Tập hợp A\B gồm các phần tử thuộc tập hợp A không thuộc tập hợp B nên A\B = {0; 1; 2}.
Bài 21 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = (– 3; 3], B = ( – 2; +∞). Tập hợp A∩B bằng:
A. {– 1; 0; 1; 2; 3};
B. [– 2; 3];
C. ( – 2; 3];
D. (– 3; +∞).
Lời giải:
Đáp án đúng là C
Ta có sơ đồ sau:
Tập hợp A∩B gồm các phần tử vừa thuộc tập hợp A vừa thuộc tập hợp B nên A∩B = ( – 2; 3].
Bài 22 trang 14 SBT Toán 10 Tập 1: Cho tập hợp A = {x ∈ ℝ| x ≥ 2, x ≠ 5}. A là tập hợp nào sau đây?
A. (2; +∞)\{5};
B. [2; 5);
C. (2; 5);
D. [2; +∞)\{5}.
Lời giải:
Đáp án đúng là D
Tập hợp A bao gồm các số thực thỏa mãn lớn hơn hoặc bằng 2 và khác 5 nên A = [2; +∞)\{5}.
A. (– 2; 3);
B. (– 2; 3) ∪ (3; 5];
C. (3; 5];
D. [2; +∞)\{5}.
Lời giải:
Đáp án đúng là B
Ta có: A = {x ∈ ℝ| – 2 ≤ x ≤ 5} = [– 2; 5];
Xét phương trình x2 – x – 6 = 0
⇔ (x + 2)(x – 3) = 0
⇔
⇔
Vì – 2; 3 ∈ ℤ nên B = {– 2; 3}.
Tập hợp A\B gồm các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B nên A\B = ( – 2; 5]\{3} hay A\B = (– 2; 3) ∪ (3; 5].
Bài 24 trang 14 SBT Toán 10 Tập 1: Cho hai tập hợp A = [– 1; +∞). Tập hợp CℝA bằng:
A. (1; +∞);
B. (– ∞; – 1);
C. (– ∞; – 1];
D. [2; +∞)\{5}.
Lời giải:
Đáp án đúng là B
Tập hợp CℝA là tập hợp phần bủ của A trong ℝ nên CℝA = ( – ∞; – 1).
A. A∪B;
B. A∩B;
C. A\B;
D. B\A.
Lời giải:
Đáp án đúng là A
Xét P(x).Q(x) = 0
⇔
Do đó nghiệm của đa thức P(x).Q(x) là nghiệm của đa thức P(x) hoặc đa thức Q(x) nên C = A∪B.
A. A∪B;
B. A∩B;
C. A\B;
D. B\A.
Lời giải:
Đáp án đúng là B
Xét P2(x) + Q2(x) = 0
Với mọi giá trị thực của x: P2(x) ≥ 0 và Q2(x) ≥ 0 nên để P2(x) + Q2(x) = 0 thì P(x) = Q(x) = 0.
Do đó nghiệm của đa thức P(x).Q(x) là nghiệm của đa thức P(x) vừa là nghiệm của đa thức Q(x) nên C = A∩B.
Lời giải:
Các tập hợp con có ba phần tử của tập hợp X là:
{a; b; c}, {a; b; d}, {a; c; d}, {b; c; d}.
Vậy các tập hợp con có ba phần tử của tập hợp X là: {a; b; c}, {a; b; d}, {a; c; d}, {b; c; d}.
Lời giải:
Ta có các tam giác cân, tam giác đều là tam giác. Do đó tập hợp B, tập hợp C là các tập hợp con của tập hợp A.
Ta lại có tam giác đều là tam giác cân nhưng tam giác cân chưa chắc là tam giác đều nên tập hợp C là tập con của tập hợp B.
Khi đó ta có: C ⊂ B ⊂ A.
Vậy ta có quan hệ của các tập hợp đã cho là: C ⊂ B ⊂ A.
Lời giải:
Ta có:
[– 1; 3] = {x ∈ ℝ| – 1 ≤ x ≤ 3};
(– 1; 3) = {x ∈ ℝ| – 1 < x < 3};
[– 1; 3) = {x ∈ ℝ| – 1 ≤ x < 3};
(– 1; 3] = {x ∈ ℝ| – 1 < x ≤ 3};
{– 1; 3}
Khi đó ta có:
(– 1; 3) ⊂ [– 1; 3]; [– 1; 3) ⊂ [– 1; 3]; (– 1; 3] ⊂ [– 1; 3]; {– 1; 3} ⊂ [– 1; 3].
(– 1; 3) ⊂ [– 1; 3); (– 1; 3) ⊂ (– 1; 3].
Giải SBT Toán 10 trang 15 Tập 1
a) Dùng kí hiệu ⊂ để mô tả quan hệ của hai trong các tập hợp trên.
b) Xác định tập hợp A∩B, A∪C, B∩C.
Lời giải:
a) Nếu x là một số chia hết cho 6 thì x chia hết cho 2 và x chia hết cho 3. Do đó tập hợp C là tập hợp con của tập hợp A và tập hợp B. Nên ta viết: C ⊂ A, C ⊂ B.
Vậy C ⊂ A, C ⊂ B.
b) Tập hợp A∩B gồm các phần tử vừa thuộc tập hợp A và vừa thuộc tập hợp B nghĩa là các phần tử này vừa chia hết cho 2 và vừa chia hết cho 3 nên các phần tử của tập A∩B chia hết cho 6. Do đó A∩B = C.
Tập hợp A∪C gồm các phần tử thuộc tập hợp A hoặc thuộc tập hợp C nghĩa là các phần tử này hoặc chia hết cho 2 hoặc chia hết cho 6 mà chia hết cho 6 cũng là chia hết cho 2 nên các phần tử của tập A∪C chia hết cho 2. Do đó A∪C = A.
Tập hợp B∩C gồm các phần tử vừa chia hết cho 3 vừa chia hết cho 6 mà chia hết cho 3 cũng là chia hết cho 6 nên các phần tử của tập hợp B∩C chia hết cho 6. Do đó B∩C = C.
Vậy A∩B = C, A∪C = A, B∩C = C.
Bài 31 trang 15 SBT Toán 10 Tập 1: Xác định các tập hợp sau:
Lời giải:
a) Ta có hình vẽ sau:
Vậy [– 2; 3] ∩ (0; 5) = (0; 3].
b) Ta có hình vẽ sau:
Vậy [– 3; 1] ∩ (1; +∞) = .
c) Ta có hình vẽ sau:
Vậy (– ∞; 0) ∪ (– 2; 2] = (– ∞; 2].
d) Ta có hình vẽ sau:
Vậy (– ∞; 0) ∪ [0; +∞) = (– ∞; +∞)
e) Ta có hình vẽ sau:
Vậy ℝ\[1; +∞) = (–∞; 1)
g) Ta có hình vẽ sau:
Vậy [3; 5]\(4; 6) = [3; 4].
Bài 32 trang 15 SBT Toán 10 Tập 1: Cho A là một tập hợp. Xác định các tập hợp sau:
Lời giải:
a) Ta có: A∩A = A;
b) Ta có: A∩ = ;
c) Ta có: A∪A = A;
d) Ta có: A∪= A;
e) Ta có: A\A = ;
g) Ta có: A\ = A.
Bài 33 trang 15 SBT Toán 10 Tập 1: Cho các tập hợp A. Có nhận xét gì về tập hợp B nếu:
Lời giải:
a) Nếu A∩B = A thì tập A là tập con của tập B.
b) Nếu A∩B = B thì tập B là tập con của tập A.
c) Nếu A∪B = A thì tập B là tập hợp con của tập A.
d) Nếu A∪B = B thì tập A là tập hợp con của tập B.
e) Nếu A\B = thì tập A là tập con của tập B.
g) Nếu A\ = B thì A = B.
Lời giải:
a) A∩B là tập hợp gồm các học sinh tham gia cả tiết mục hát và tiết mục múa.
b) A∪B là tập hợp gồm các học sinh tham gia ít nhất một tiết mục hát hoặc múa.
c) A\B là tập hợp gồm các học sinh chỉ tham gia tiết mục hát.
d) E\A là tập hợp gồm các học sinh của lớp 10A không tham gia tiết mục hát.
g) E\(A∪B) là tập hợp gồm các học sinh của lớp 10A không tham gia tiết mục nào.
a) Có bao nhiêu học sinh tham gia câu lạc bộ bóng đá mà không tham gia câu lạc bộ cờ vua?
b) Có bao nhiêu học sinh tham gia cả hai câu lạc bộ?
Lời giải:
Ta có sơ đồ Venn sau:
a) Gọi A là tập hợp học sinh tham gia câu lạc bộ bóng đá, B là tập hợp học sinh tham gia câu lạc bộ cờ vua.
Khi đó n(A) = 19, n(B) = 15.
Tập hợp học sinh tham gia câu lạc bộ bóng đá mà không tham gia câu lạc bộ cờ vua là tập A\B hay chính là tập hợp (A∪B)\B.
⇒ n((A∪B)\B) = n(A∪B) – n(B) = 27 – 15 = 12.
Vậy số học sinh tham gia câu lạc bộ bóng đá mà không tham gia câu lạc bộ cờ vua là 12 học sinh.
b) Tập hợp số học sinh tham gia cả hai câu lạc bộ là tập A∩B. Số phần tử của tập hợp A∩B bằng số học sinh tham gia câu lạc bộ bóng đá trừ đi số học sinh chỉ tham gia câu lạc bộ bóng đá.
⇒ n(A∩B) = n(A) – n(A\B) = 19 – 12 = 7.
Vậy số học sinh tham gia cả hai câu lạc bộ là 7 học sinh.
c) Tổng số học sinh của lớp 10A là: 27 + 8 = 35 (học sinh)
Vậy số học sinh của lớp 10A là 35 học sinh.
Lời giải:
a) Xét bất phương trình 5x – 2 > 0 ⇔ x >
⇒ E = {x ∈ ℝ| x > } = .
Xét bất phương trình 3x + 7 ≥ 0 ⇔ x ≥
⇒ G = {x ∈ ℝ| x ≥ } = .
Tập hợp E ∩ G là tập hợp các số thực x sao cho x > và x ≥ hay E ∩ G = {x ∈ ℝ| x > } = E.
⇒ D = E ∩ G = E.
Vậy D = E.
b) Xét bất phương trình: 2x + 3 > 0 ⇔ x >
⇒ E = {x ∈ ℝ| x > } = .
Xét bất phương trình 5x – 9 ≤ 0 ⇔ x ≤
⇒ G = {x ∈ ℝ| x ≤ } = .
Tập hợp E ∩ G là tập hợp các số thực x sao cho x > và x ≤ hay E ∩ G = {x ∈ ℝ| < x ≤ } = .
⇒ D = E ∩ G = .
Vậy D = .
c) Xét bất phương trình 9 – 3x ≥ 0 ⇔ x ≤ 3
⇒ E = {x ∈ ℝ| x ≤ 3} = ( – ∞; 3].
Xét bất phương trình 12 – 3x < 0 ⇔ x > 4
⇒ G = {x ∈ ℝ| x > 4} = (4; +∞).
Tập hợp E ∩ G là tập hợp các số thực x sao cho x > 4 và x ≤ 3 hay E ∩ G = {x ∈ ℝ| x > 4 và x ≤ 3} = .
⇒ D = E ∩ G = .
Vậy D = .
Lời giải:
a) Để B ⊂ A thì ⇔ 0 ≤ m ≤ 2.
Vậy với m thỏa mãn 0 ≤ m ≤ 2 thì B ⊂ A.
b) Để A ∩ B = thì
Vậy với m thỏa mãn m ≤ – 6 hoặc m ≥ 8 thì A ∩ B = .
Giải SBT Toán 10 trang 16 Tập 1
Lời giải:
Để tập hợp A ∩ B chứa đúng một phần tử thì .
Vậy với m= n – 2 hoặc m = n + 1 thì tập hợp A ∩ B chứa đúng một phần tử.
b) A ∩ B chứa đúng 5 số nguyên.
Lời giải:
a) Để A ∪ B = ℝ thì m + 1 ≥ 3 ⇔ m ≥ 2.
Vậy với m ≥ 2 thì A ∪ B = ℝ.
b) Để A ∩ B ≠ thì m + 1 ≥ 3 ⇔ m ≥ 2 (1)
Khi đó A ∩ B = [3; m + 1)
Để tập hợp A ∩ B chứa đúng 5 số nguyên thì 7 < m + 1 ≤ 8 ⇔ 6 < m ≤ 7 (2)
Kết hợp (1) và (2) ta được 6 < m ≤ 7.
Vậy với 6 < m ≤ 7 thì A ∩ B chứa đúng 5 số nguyên.
Bài 40 trang 16 SBT Toán 10 Tập 1: Biểu diễn tập hợp A = {x ∈ ℝ| x2 ≥ 9} thành hợp các nửa khoảng.
Lời giải:
Xét bất phương trình x2 ≥ 9
⇔ |x| ≥ 3
⇔
Suy ra A = {x ∈ ℝ| x ≤ –3 hoặc x ≥ 3} = (–∞; – 3] ∪ [3; +∞).
Vậy A = (–∞; – 3] ∪ [3; +∞).
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 1: Bất phương trình bậc nhất hai ẩn