Giải Sách bài tập Toán 10 Bài 1: Bất phương trình bậc nhất hai ẩn
Giải SBT Toán 10 trang 24 Tập 1
Bài 1 trang 24 SBT Toán 10 Tập 1: Cặp số nào sau đây là nghiệm của bất phương trình – 3x + 5y ≤ 6.
A. (2; 8);
B. (– 10; – 3);
C. (3; 3);
D. (0; 2).
Lời giải:
Đáp án đúng là C
+) Thay x = 2, y = 8 vào bất phương trình – 3x + 5y ≤ 6, ta được:
– 3.2 + 5.8 ≤ 6 ⇔ 34 ≤ 6 (vô lí)
Do đó cặp số (2; 8) không là nghiệm của bất phương trình đã cho.
+) Thay x = – 10, y = – 3 vào bất phương trình – 3x + 5y ≤ 6, ta được:
– 3.(–10) + 5.(–3) ≤ 6 ⇔ 15 ≤ 6 (vô lí)
Do đó cặp số (– 10; – 3) không là nghiệm của bất phương trình đã cho.
+) Thay x = 3, y = 3 vào bất phương trình – 3x + 5y ≤ 6, ta được:
– 3.3 + 5.3 ≤ 6 ⇔ 6 ≤ 6 (luôn đúng)
Do đó cặp số (3; 3) không là nghiệm của bất phương trình đã cho.
+) Thay x = 0, y = 2 vào bất phương trình – 3x + 5y ≤ 6, ta được:
– 3.0 + 5.2 ≤ 6 ⇔ 10 ≤ 6 (vô lí)
Do đó cặp số (0; 2) không là nghiệm của bất phương trình đã cho.
A. (0; 0);
B. (3; 0);
C. (1; – 2);
D. (– 3; – 4).
Lời giải:
Đáp án đúng là B
+) Thay x = 0, y = 0 vào bất phương trình 2x – 3y > 5, ta được:
2.0 – 3.0 > 5 ⇔ 0 > 5 (vô lí)
Do đó cặp số (0; 0) không thuộc miền nghiệm của bất phương trình đã cho.
+) Thay x = 3, y = 0 vào bất phương trình 2x – 3y > 5, ta được:
2.3 – 3.0 > 5 ⇔ 6 > 5 (thỏa mãn)
Do đó cặp số (0; 0) thuộc miền nghiệm của bất phương trình đã cho.
+) Thay x = 1, y = – 2 vào bất phương trình 2x – 3y > 5, ta được:
2.1 – 3.(– 2) > 5 ⇔ 8 > 5 (thỏa mãn)
Do đó cặp số (1; – 2) thuộc miền nghiệm của bất phương trình đã cho.
+) Thay x = – 3, y = –4 vào bất phương trình 2x – 3y > 5, ta được:
2.(– 3) – 3.(– 4) > 5 ⇔ 6 > 5 (thỏa mãn)
Do đó cặp số (– 3; – 4) thuộc miền nghiệm của bất phương trình đã cho.
A.
B.
C.
D.
Lời giải:
Đáp án đúng là B
Phương trình đường thẳng d có dạng: x – 2y = 4.
Đường thẳng d cắt hai trục tọa độ Ox, Oy lần lượt tại hai điểm có tọa độ (4; 0) và (0; – 2).
Ta có: 0 – 2.0 = 0 < 4 (luôn đúng). Do đó miền nghiệm của bất phương trình chứa điểm (0; 0) và không chứa đường thẳng d.
Khi đó miền nghiệm là nửa mặt phẳng không bị gạch và không kể d được thể hiện trong hình vẽ sau:
Giải SBT Toán 10 trang 25 Tập 1
A. 3x + y < 3;
B. x + 3y > 3;
C. x + 3y < 3;
D. 3x + y > 3.
Lời giải:
Đáp án đúng là D
Gọi đường thẳng d có dạng: y = ax + b (a ≠ 0)
Đường thẳng d cắt trục Ox tại điểm có tọa độ (1; 0), thay tọa độ này vào phương trình đường thẳng d ta được: 0 = a.1+ b ⇔ a + b = 0 (1).
Đường thẳng d cắt trục Oy tại điểm có tọa độ (0; 3), thay tọa độ này vào phương trình đường thẳng d ta được: 3 = a.0 + b ⇔ b = 3.
Thay b = 3 vào (1) ta được: a + 3 = 0 ⇔ a = – 3 (thỏa mãn).
Khi đó phương trình đường thẳng d là: y = – 3x + 3 hay 3x + y = 3.
Ta có: 3.0 + 0 = 0 < 3 và dựa vào hình vẽ ta thấy điểm (0; 0) không thuộc vào miền nghiệm của bất phương trình đã cho và không kể đường thẳng d nên 3x + y > 3.
Vậy nửa mặt phẳng không bị gạch (không kể d) ở Hình 3 biểu diền miền nghiệm của bất phương trình 3x + y > 3.
A. 2x – y ≤ 0;
B. 2x – y ≥ 0;
C. x – 2y ≥ 0;
D. x – 2y ≤ 0.
Lời giải:
Đáp án đúng là A
Gọi đường thẳng d có dạng: y = ax + b (a ≠ 0)
Đường thẳng d đi qua gốc tọa độ (0; 0), thay tọa độ này vào phương trình đường thẳng d ta được: 0 = a.0 + b ⇔ b = 0 (1).
Đường thẳng d đi qua điểm có tọa độ (1; 2), thay tọa độ này vào phương trình đường thẳng d ta được: 2 = a.1 + b ⇔ a + b = 2.
Mà b = 0 nên a + 0 = 2 ⇔ a = 2 (thỏa mãn).
Khi đó phương trình đường thẳng d là: y = 2x hay 2x – y = 0.
Ta có: 2.0 – 2 = – 2 < 0 và dựa vào hình vẽ ta thấy điểm (0; 2) thuộc vào miền nghiệm của bất phương trình đã cho và kể cả đường thẳng d nên 2x – y ≤ 0.
Vậy nửa mặt phẳng không bị gạch (kể cả d) ở Hình 4 biểu diền miền nghiệm của bất phương trình 2x – y ≤ 0.
Bài 6 trang 25 SBT Toán 10 Tập 1: Cặp số nào sau đây là nghiệm của bất phương trình – 5x + 2y > 10?
Lời giải:
a) Thay x = – 2, y = 1 vào bất phương trình – 5x + 2y > 10, ta được:
– 5.(– 2) + 2.1 > 10 ⇔ 12 > 10 (luôn đúng)
Do đó cặp số (– 2; 1) là nghiệm của bất phương trình đã cho.
b) Thay x = 1, y = 5 vào bất phương trình – 5x + 2y > 10, ta được:
– 5.1 + 2.5 > 10 ⇔ 5 > 10 (vô lí)
Do đó cặp số (1; 5) không là nghiệm của bất phương trình đã cho.
c) Thay x = 0, y = 5 vào bất phương trình – 5x + 2y > 10, ta được:
– 5.0 + 2.5 > 10 ⇔ 10 > 10 (vô lí)
Do đó cặp số (0; 5) không là nghiệm của bất phương trình đã cho.
Vậy chỉ có cặp số (– 2; 1) là nghiệm của bất phương trình đã cho.
Bài 7 trang 25 SBT Toán 10 Tập 1: Biểu diễn miền nghiệm của mỗi bất phương trình sau:
Lời giải:
a) Biểu diễn miền nghiệm của bất phương trình 3x + 5y < 15 gồm các bước sau:
+) Vẽ đường thẳng d: 3x + 5y = 15:
Đường thẳng d đi qua hai điểm (0; 3) và (5; 0).
+) Lấy điểm O(0; 0), ta có: 3.0 + 5.0 = 0 < 15.
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng chứa điểm O(0; 0) và không kể đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
b) Biểu diễn miền nghiệm của bất phương trình x – 2y ≥ 6 gồm các bước sau:
+) Vẽ đường thẳng d: x – 2y = 6:
Đường thẳng d đi qua hai điểm (0; – 3) và (6; 0).
+) Lấy điểm O(0; 0), ta có: 0 – 2.0 = 0 < 6.
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng không chứa điểm O(0; 0) và kể cả đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
c) Biểu diễn miền nghiệm của bất phương trình y > – x + 3 hay x + y > 3 gồm các bước sau:
+) Vẽ đường thẳng d: x + y = 3:
Đường thẳng d đi qua hai điểm (0; 3) và (3; 0).
+) Lấy điểm O(0; 0), ta có: 0 + 0 = 0 < 3.
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng không chứa điểm O(0; 0) và không kể đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
d) Biểu diễn miền nghiệm của bất phương trình y ≤ 4 – 2x hay 2x + y ≤ 4 gồm các bước sau:
+) Vẽ đường thẳng d: 2x + y = 4:
Đường thẳng d đi qua hai điểm (2; 0) và (0; 4).
+) Lấy điểm O(0; 0), ta có: 2.0 + 0 = 0 ≤ 4 .
Vậy miền nghiệm của bất phương trình đã cho là nửa mặt phẳng chứa điểm O(0; 0) và kể cả đường thẳng d là nửa mặt phẳng tô màu trong hình sau:
Lời giải:
+) Hình 5b):
Đường thẳng d là đường thẳng song song với trục Ox và đi qua điểm (0; 2) nên phương trình đường thẳng d là y = 2 hay 0.x + 1.y = 2.
Lấy O(0; 0) có 0.0 + 1.0 = 0 < 2.
Quan sát trên Hình 5a) ta thấy điểm O(0; 0) không thuộc nửa mặt phẳng là miền nghiệm của bất phương trình và không kể đường thẳng d nên bất phương trình cần tìm là: y > 2.
Vậy bất phương trình có miền nghiệm được biểu diễn ở Hình 5a) là y > 2.
+) Hình 5b):
Đường thẳng d là đường thẳng song song với trục Oy và đi qua điểm (1; 0) nên phương trình đường thẳng d là x = 1 hay x + 0.y = 1.
Lấy O(0; 0) có 1.0 + 0.0 = 0 < 1.
Quan sát trên Hình 5b) ta thấy điểm O(0; 0) thuộc nửa mặt phẳng là miền nghiệm của bất phương trình và không kể đường thẳng d nên bất phương trình cần tìm là: x < 1.
Vậy bất phương trình có miền nghiệm được biểu diễn ở Hình 5b) là x < 1.
+) Hình 5c):
Gọi phương trình đường thẳng d có dạng: y = ax + b (a ≠ 0)
Đường thẳng d là đường thẳng đi qua hai điểm có tọa độ (– 2; 0) nên thay tọa độ điểm này vào phương trình d ta được: 0 = a.(– 2) + b ⇔ – 2a + b = 0 (1).
Đường thẳng d là đường thẳng đi qua hai điểm có tọa độ (0; – 1) nên thay tọa độ điểm này vào phương trình d ta được: – 1 = a.0 + b ⇔ b = – 1.
Thay b = 0 – 1 vào (1) ta được – 2a + (– 1) = 0 ⇔ a = .
Suy ra phương trình đường thẳng d là y = x – 1 hay x + y = – 1.
Lấy O(0; 0) có .0 + 0 = 0 > – 1.
Quan sát trên Hình 5c) ta thấy điểm O(0; 0) thuộc nửa mặt phẳng là miền nghiệm của bất phương trình và không kể đường thẳng d nên bất phương trình cần tìm là: x + y > – 1.
Vậy bất phương trình có miền nghiệm được biểu diễn ở Hình 5c) là x + y > – 1.
Giải SBT Toán 10 trang 26 Tập 1
b) Chỉ ra một nghiệm nguyên của bất phương trình đó.
Lời giải:
a) Số tiền mua bốn cốc trà sữa là: 35.4 = 140 (nghìn đồng).
Số tiền khi thêm x phần trân châu đen là: 5x (nghìn đồng).
Số tiền khi thêm y phần trân châu trắng là: 10y (nghìn đồng).
Tổng số tiền mà bốn bạn phải trả cho 4 cốc trà sữa và phần trân châu thêm là:
5x + 10y + 140 (nghìn đồng).
Vì số tiền các bạn đem theo tất cả là 185 nghìn đồng nên 5x + 10y + 140 ≤ 185
⇔ x + 2y ≤ 9
Vậy bất phương trình bậc nhất hai ẩn x, y để thể hiện số tiền các bạn có đủ khả năng chi trả cho phần trân châu đen, trắng là x + 2y ≤ 9.
b) Chọn x = 1, y = 1 thay vào bất phương trình trên ta được:
1 + 2.1 ≤ 9 ⇔ 3 ≤ 9 (luôn đúng).
Vậy cặp (1; 1) là một nghiệm nguyên của bất phương trình đã cho.
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Tập hợp. Các phép toán trên tập hợp