Xét các số thực dương x, y, z thỏa mãn x+y+z=4 và xy+yz+zx=5. Giá trị nhỏ nhất của biểu thức

Xét các số thực dương x, y, z thỏa mãn x+y+z=4 và xy+yz+zx=5. Giá trị nhỏ nhất của biểu thức x3+y3+z31x+1y+1z bằng

A. 20

B. 25

C. 15

D. 35

Trả lời

Chọn B

Ta có: x+y+z=4xy+yz+zx=5x+y=4zxy=5zx+y=54z+z2.

Lại có:x+y24xy x+y4z2454z+z223z22. Dấu '=" xảy ra khi x=y.

Và x+y+z3=x3+y3+z3+3x+y+zx+yz+3xyx+y

x3+y3+z3=4312x+yz3xyx+y=6434z5+z2.

Ta có: P=x3+y3+z31x+1y+1z=3z312z2+15z+45z34z2+5z.

Đặt t=z34z2+5z, với 23z25027t2.

Do đó xét hàm số ft=54t+3, với 5027t2.

Ta có f't=20t2<0, t5027;2 nên hàm số ft liên tục và nghịch biến.

Do đó Pmin=f2=25 đạt tại x=y=1, z=2.

Câu hỏi cùng chủ đề

Xem tất cả