Câu hỏi:
19/01/2024 59
Với x thuộc tập hợp nào dưới đây thì f(x) = 2x2 – 7x – 15 không âm?
Với x thuộc tập hợp nào dưới đây thì f(x) = 2x2 – 7x – 15 không âm?
A. \[\left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {5; + \infty } \right)\];
A. \[\left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {5; + \infty } \right)\];
B. \[\left( { - \infty ; - 5} \right] \cup \left[ {\frac{3}{2}; + \infty } \right)\];
B. \[\left( { - \infty ; - 5} \right] \cup \left[ {\frac{3}{2}; + \infty } \right)\];
C. \(\left[ { - 5;\frac{3}{2}} \right]\);
C. \(\left[ { - 5;\frac{3}{2}} \right]\);
D. \(\left[ { - \frac{3}{2};5} \right]\).
D. \(\left[ { - \frac{3}{2};5} \right]\).
Trả lời:
Đáp án đúng là: A
Xét f(x) = 2x2 – 7x – 15 có ∆ = 169 > 0, hai nghiệm phân biệt là x = 5; x = \( - \frac{3}{2}\) và a = 2 > 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có f(x) không âm khi x \( \in \) \[\left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {5; + \infty } \right)\].
Đáp án đúng là: A
Xét f(x) = 2x2 – 7x – 15 có ∆ = 169 > 0, hai nghiệm phân biệt là x = 5; x = \( - \frac{3}{2}\) và a = 2 > 0
Ta có bảng xét dấu
Từ bảng xét dấu ta có f(x) không âm khi x \( \in \) \[\left( { - \infty ; - \frac{3}{2}} \right] \cup \left[ {5; + \infty } \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của m để bất phương trình x2 + 3mx2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.
Có bao nhiêu giá trị nguyên của m để bất phương trình x2 + 3mx2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.
Câu 3:
Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.
Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.
Câu 4:
Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là
Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là
Câu 5:
Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là
Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là
Câu 6:
Tích các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Tích các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Câu 7:
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] thuộc khoảng nào trong các khoảng sau
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] thuộc khoảng nào trong các khoảng sau
Câu 8:
Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây
Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây
Câu 9:
Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0
Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0
Câu 11:
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) ≤ 0 với \[\forall x \in \mathbb{R}\].
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) ≤ 0 với \[\forall x \in \mathbb{R}\].
Câu 12:
Biểu thức f(x) = (m2 + 2)x2 – 2(m – 2)x + 2 luôn nhận giá trị dương khi và chỉ khi:
Biểu thức f(x) = (m2 + 2)x2 – 2(m – 2)x + 2 luôn nhận giá trị dương khi và chỉ khi:
Câu 13:
Gọi x là nghiệm của phương trình
\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)
Tính giá trị của biểu thức A = x2 – 3x + 15
Gọi x là nghiệm của phương trình
\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)
Tính giá trị của biểu thức A = x2 – 3x + 15