Câu hỏi:
19/01/2024 63
Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây
Cho f(x) = x2 – 4. Tìm khẳng định sai trong các khẳng định sau đây
A. f(x) < 0 khi x \[ \in \](– 2; 2);
A. f(x) < 0 khi x \[ \in \](– 2; 2);
B. f(x) > 0 khi x \[ \in \](- ∞; - 2) ∪ (2; + ∞);
B. f(x) > 0 khi x \[ \in \](- ∞; - 2) ∪ (2; + ∞);
C. f(x) = 0 khi x = 2; x = – 2;
C. f(x) = 0 khi x = 2; x = – 2;
D. f(x) > 0 khi x \[ \in \] (– 2; 2).
D. f(x) > 0 khi x \[ \in \] (– 2; 2).
Trả lời:
Đáp án đúng là: D
Xét f(x) = x2 – 4 có ∆ = 16 > 0, hai nghiệm phân biệt là x = –2; x = 2 và a = 1 > 0
Ta có bảng xét dấu
x
-∞ – 2 2 +∞
f(x)
+ 0 – 0 +
Từ bảng xét dấu ta có f(x) > với mọi x \( \in \) (- ∞; - 2) và (2; + ∞); f(x) < 0 khi x \[ \in \](– 2; 2)
Vậy khẳng định sai là D.
Đáp án đúng là: D
Xét f(x) = x2 – 4 có ∆ = 16 > 0, hai nghiệm phân biệt là x = –2; x = 2 và a = 1 > 0
Ta có bảng xét dấu
x |
-∞ – 2 2 +∞ |
f(x) |
+ 0 – 0 + |
Từ bảng xét dấu ta có f(x) > với mọi x \( \in \) (- ∞; - 2) và (2; + ∞); f(x) < 0 khi x \[ \in \](– 2; 2)
Vậy khẳng định sai là D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của m để bất phương trình x2 + 3mx2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.
Có bao nhiêu giá trị nguyên của m để bất phương trình x2 + 3mx2 + 4mx + 4 ≥ 0 với mọi x \( \in \) ℝ.
Câu 3:
Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.
Xác định m để bất phương trình x2 + 2(m – 2)x + 2m – 1 > 0 có nghiệm với mọi x \( \in \) ℝ.
Câu 4:
Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là
Tổng các nghiệm của phương trình \(\sqrt {x + 3} + \sqrt {6 - x} = 3 + \sqrt {(x + 3)(6 - x)} \) (*) là
Câu 5:
Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là
Tích các nghiệm của phương trình x2 + 2\(\sqrt {{x^2} - 3x + 11} \) = 3x + 4 là
Câu 6:
Tích các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Tích các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Câu 7:
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] thuộc khoảng nào trong các khoảng sau
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] thuộc khoảng nào trong các khoảng sau
Câu 9:
Với x thuộc tập hợp nào dưới đây thì f(x) = 2x2 – 7x – 15 không âm?
Với x thuộc tập hợp nào dưới đây thì f(x) = 2x2 – 7x – 15 không âm?
Câu 10:
Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0
Số nghiệm của phương trình 4x2 – 12x + 5\(\sqrt {4{x^2} - 12x} \) = 0
Câu 11:
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) ≤ 0 với \[\forall x \in \mathbb{R}\].
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) ≤ 0 với \[\forall x \in \mathbb{R}\].
Câu 12:
Biểu thức f(x) = (m2 + 2)x2 – 2(m – 2)x + 2 luôn nhận giá trị dương khi và chỉ khi:
Biểu thức f(x) = (m2 + 2)x2 – 2(m – 2)x + 2 luôn nhận giá trị dương khi và chỉ khi:
Câu 13:
Gọi x là nghiệm của phương trình
\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)
Tính giá trị của biểu thức A = x2 – 3x + 15
Gọi x là nghiệm của phương trình
\(\sqrt {3x - 2} + \sqrt {x - 1} = 4x - 9 + 2\sqrt {3{x^2} - 5x + 2} \)
Tính giá trị của biểu thức A = x2 – 3x + 15