Viết phương trình tiếp tuyến của parabol y = –x^2 + 4x, biết

Bài 9.3 trang 86 Toán 11 Tập 2: Viết phương trình tiếp tuyến của parabol y = –x2 + 4x, biết:

a) Tiếp điểm có hoành độ x0 = 1;

b) Tiếp điểm có tung độ y0 = 0.

 

Trả lời

Đặt y = f(x) = – x2 + 4x.

Với x0 bất kì, ta có:

f'(x0) = limxx0f(x)f(x0)xx0=limxx0x2+4x+x024x0xx0

=limxx0x2x02+4xx0xx0=limxx0xx0xx0+4xx0

=limxx0(xx0+4)=2x0+4.

Vậy hàm số y = –x2 + 4x có đạo hàm là hàm số y' = –2x + 4.

a)

Ta có: y'(1) = –2.1 + 4 = 2.

Ngoài ra, f(1) = 3 nên phương trình tiếp tuyến cần tìm là:

y – 3 = 2(x – 1) hay y = 2x + 1.

b)

Ta có: y0 = 0 nên –x02 + 4x0 = 0 ⇔ Bài 9.3 trang 86 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11.

+) Với x0 = 0, y= 0, ta có y'(0) = 4, do đó phương trình tiếp tuyến cần tìm là y = 4x.

+) Với x0 = 4, y0 = 0, ta có y'(4) = –4 do đó phương trình tiếp tuyến cần tìm là:

y = –4(x – 4) hay y = –4x + 16.

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả