Vẽ đồ thị các hàm số sau: a) y = x^2 – 4x + 3; b) y = - x^2 – 4x + 5
Bài 3 trang 59 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau:
a) y = x2 – 4x + 3;
b) y = - x2 – 4x + 5;
c) y = x2 – 4x + 5;
d) y = -x2 – 2x – 1.
Bài 3 trang 59 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau:
a) y = x2 – 4x + 3;
b) y = - x2 – 4x + 5;
c) y = x2 – 4x + 5;
d) y = -x2 – 2x – 1.
a) Xét hàm số y = x2 – 4x + 3, ta có:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = x2 – 4x + 3 là một parabol (P):
– Có đỉnh S với hoành độ xS = 2, tung độ yS = –1;
– Có trục đối xứng là đường thẳng x = 2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
– Bề lõm quay lên trên vì a > 0;
– Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3);
– Ngoài ra, phương trình x2 – 4x + 3 = 0 có hai nghiệm phân biệt là x1 = 1, x2 = 3. Do đó, đồ thị còn đi qua hai điểm (1; 0), (3; 0).
Ta vẽ được đồ thị như hình dưới:
b) Xét hàm số y = –x2 – 4x + 5, ta có:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 – 4x + 5 là một parabol (P):
– Có đỉnh S với hoành độ xS = –2, tung độ yS = 9;
– Có trục đối xứng là đường thẳng x = –2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
– Bề lõm quay xuống dưới vì a < 0;
– Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5);
– Ngoài ra, phương trình –x2 – 4x + 5 = 0 có hai nghiệm phân biệt là x1 = –5, x2 = 1. Do đó, đồ thị còn đi qua hai điểm (–5; 0), (1; 0).
Ta vẽ được đồ thị như hình dưới:
c) Xét hàm số y = x2 – 4x + 5, ta có:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = x2 – 4x + 5 là một parabol (P):
– Có đỉnh S với hoành độ xS = 2, tung độ yS = 1;
– Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
– Bề lõm quay lên trên vì a > 0;
– Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5);
– Ngoài ra, đồ thị hàm số y = x2 – 4x + 5 còn đi qua điểm (4; 5).
Ta vẽ được đồ thị như hình dưới:
d) Xét hàm số y = –x2 – 2x – 1, ta có:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 – 2x – 1 là một parabol (P):
– Có đỉnh S với hoành độ xS = –1, tung độ yS = 0;
– Có trục đối xứng là đường thẳng x = –1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);
– Bề lõm quay xuống dưới vì a < 0;
– Cắt trục tung tại điểm có tung độ bằng –1, tức là đồ thị đi qua điểm có tọa độ (0; –1);
– Ngoài ra, đồ thị hàm số y = –x2 – 2x – 1 còn đi qua hai điểm (–3; –4) và (1; –4).
Ta vẽ được đồ thị như hình dưới:
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ