Tìm điều kiện của m để mỗi hàm số sau đây là một hàm số bậc hai: a) y = (1 – 3m)x^2 + 3
458
12/06/2023
Bài 2 trang 59 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau đây là một hàm số bậc hai:
a) y = (1 – 3m)x2 + 3;
b) y = (4m – 1)(x – 7)2;
c) y = 2(x2 + 1) + 11 – m.
Trả lời
a) Hàm số y = (1 – 3m)x2 + 3 là hàm số bậc hai khi và chỉ khi
1 – 3m ≠ 0
⇔ 3m ≠ 1
Vậy thì hàm số đã cho là hàm số bậc hai.
b) Có:
y = (4m – 1)(x – 7)2 = (4m – 1)(x2 – 14x + 49) = (4m – 1)x2 – 14(4m – 1)x + 49(4m – 1)
Hàm số này là hàm số bậc hai khi và chỉ khi
4m – 1 ≠ 0
⇔ 4m ≠ 1
Vậy thì hàm số đã cho là hàm số bậc hai.
c) Có:
y = 2(x2 + 1) + 11 – m = 2x2 + 2 + 11 – m = 2x2 + 13 – m
Hàm số này luôn là hàm số bậc hai với mọi giá trị của m.
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Hàm số và đồ thị
Bài 2: Hàm số bậc hai
Bài tập cuối chương 3
Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ
Bài 2: Định lí côsin và định lí sin
Bài 3: Giải tam giác và ứng dụng thực tế