Từ các chữ số 0, 1, 2, 3, 4, 5, có thể lập bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 9.
Từ các chữ số 0, 1, 2, 3, 4, 5, có thể lập bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 9.
Từ các chữ số 0, 1, 2, 3, 4, 5, có thể lập bao nhiêu số gồm 3 chữ số khác nhau và chia hết cho 9.
Gọi số cần lập có 3 chữ số đôi một khác nhau có dạng:
Theo giả thiết là các số này sẽ chia hết cho 9, do đó ta có:
Khi đó các số a, b, c thuộc các tập số và
+ TH1: Nếu các số a, b, c thuộc tập A.
Khi đó chữ số a có: 2 cách chọn; chữ số b có 2 cách và c có 1 cách chọn. Vậy ta có: (số).
+ TH2: Nếu các số a, b, c thuộc tập B.
Khi đó a có 3 cách chọn, b có 2 cách và c có 1 cách chọn. Vậy ta có: (số).
Áp dụng quy tắc cộng ta có các số tạo thành thỏa mãn bài toán là: (số).