Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x+2)^2 + (y-2)^2 = 25  và điểm A(- 1; 3)

Bài 56 trang 89 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho đường tròn C:x+22+y42=25  và điểm A(- 1; 3)

a) Xác định vị trí tương đối của điểm A đối với đường tròn (C).

b) Đường thẳng d thay đổi đi qua A cắt đường tròn tại M và N. Viết phương trình đường thẳng d sao cho MN ngắn nhất.

Trả lời

a) Đường tròn (C) có tâm I(-2; 4) và bán kính R = 25  = 5.

Ta có: IA=IA=2+12+432=2  < 5

Do đó A nằm trong đường tròn (C).

b) Dây cung MN ngắn nhất khi khoảng cách từ tâm I đến dây cung là lớn nhất

Do d đi qua A cố định nên khi d thay đổi thì khoảng cách lớn nhất từ I đến d chính bằng IA.

Hay IA vuông góc với d.

Vectơ pháp tuyến của đường thẳng d:  IA=1;1

Phương trình đường thẳng d: (x + 1) – (y – 3) = 0 ⇔ x – y + 4 = 0.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Biểu thức tọa độ của các phép toán vectơ

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Câu hỏi cùng chủ đề

Xem tất cả