Trong mặt phẳng tọa độ Oxy, cho các đường thẳng: ∆1:x+y+1=0, ∆2:3x+4y+20=0; ∆3:2x-y+50=0

Bài 57 trang 90 SBT Toán 10 Tập 2: Trong mặt phẳng tọa độ Oxy, cho các đường thẳng: Δ1:x+y+1=0,Δ2:3x+4y+20=0;Δ3:2xy+50=0 và đường tròn C:x+32+y12=9 . Xác định vị trí tương đối của các đường thẳng đã cho đối với đường tròn (C).

Trả lời

Đường tròn (C) có tâm I(-3; 1) và bán kính R = 3.

Ta có: dI,Δ1=3+1+112+12=12<3 , suy ra Δ1  cắt đường tròn tại hai điểm phân biệt.

dI,Δ2=3.3+4.1+2032+42=155=3=R, suy ra Δ2  tiếp xúc với đường tròn.

dI,Δ3=2.31+5022+12=435>3, suy ra Δ3  không có điểm chung với đường tròn.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Biểu thức tọa độ của các phép toán vectơ

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Câu hỏi cùng chủ đề

Xem tất cả