Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn (C): (x+2)^2 + (y-3)^2 = 4

Bài 55 trang 89 SBT Toán 10 Tập 2: Lập phương trình đường thẳng ∆ là tiếp tuyến của đường tròn C:x+22+y32=4  trong mỗi trường hợp sau:

a) ∆ tiếp xúc (C) tại điểm có tung độ bằng 3.

b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0.

c) ∆ đi qua điểm D(0; 4).

Trả lời

Đường tròn có tâm I(-2; 3) và bán kính R = 2.

a) Hoành độ của điểm có tung độ bằng 3 là:

 x+22+332=4x=0x=4

Suy ra ta có 2 điểm M(0; 3) và điểm N(-4; 3).

Vectơ pháp tuyến của đường thẳng IM là: IM=2;0 .

Phương trình đường thẳng IM: 2(x – 0) = 0 hay x = 0.

Vectơ pháp tuyến của đường thẳng IN là: .

Phương trình đường thẳng IN: - 2(x + 4) = 0 hay x + 4 = 0.

Vậy phương trình đường thẳng là: x = 0 hoặc x + 4 = 0.

b) ∆ vuông góc với đường thẳng 5x – 12y + 1 = 0

nên ∆ có dạng: 12x + 5y + c = 0.

Khoảng cách từ I đến ∆ bằng R nên  

 12.2+5.3+c122+52=2c=35c=17

Với c = 35 thì phương trình tiếp tuyến là: 12x + 5y + 35 =0

Với c = - 17 thì phương trình tiếp tuyến là: 12x + 5y – 17 =0

c) Gọi H(a ;b) là tiếp điểm.

Do D(0; 4) thuộc  nên DH vuông góc với IH và IH = R = 2.

Ta có: DH=a;b4  và  IH=a+2;b3

⇒ IH =IH=a+22+b32=2

⇔ a2 + 4a + 4 + b2 – 6b + 9 = 4

⇔ a2 + 4a  + b2 – 6b + 9 = 0 (1)

Ta lại có:  DH.IH=0aa+2+b4b3=0

⇔ a2 + 2a + b2 – 7b + 12 = 0 (2)

Từ (1) và (2) ta có hệ phương trình:a2+ 4a + b2 6b + 9 = 0a2+ 2a + b2 7b + 12 = 0

2a + b=33a2+2a+b27b+12 = 0 b=32a a2+2a+32a2732a+12 = 0 b=32a a2+2a+912a+4a221+14a+12 = 0 b=32a 5a2+4a= 0a=0;  b=3a=45;  b=235

Với a = 0, b = 3 thì H(0; 3)

Suy ra IH=2;0

Do đó phương trình tiếp tuyến cần tìm là: 2(x – 0) = 0 ⇔ x = 0.

Với a=45;  b=235

Suy ra IH=65;85=253;4

Do đó phương trình tiếp tuyến cần tìm là: 3(x – 0) + 4(y – 4) = 0 ⇔ 3x + 4y – 16 = 0.

Vậy có hai đường thẳng ∆ thỏa mãn yêu cầu là x = 0 hoặc 3x + 4y – 16 = 0.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác: 

Bài 2: Biểu thức tọa độ của các phép toán vectơ

Bài 3: Phương trình đường thẳng

Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 5: Phương trình đường tròn

Bài 6: Ba đường conic

Bài tập cuối chương 7

Câu hỏi cùng chủ đề

Xem tất cả