Trong các tam giác vuông có độ dài các cạnh là số nguyên mà giá trị diện tích và

Trong các tam giác vuông có độ dài các cạnh là số nguyên mà giá trị diện tích và chu vi bằng nhau, độ dài đường cao ứng với cạnh huyền đạt giá trị lớn nhất có thể là?

Trả lời

Gọi độ dài hai cạnh góc vuông là a và b (a,b ℕ*, đvđd)

\( \Rightarrow \) Độ dài cạnh huyền là \[\sqrt {{a^2} + {b^2}} \].

Gọi đường cao là h.

Khi đó:

Chu vi của tam giác là: \(a + b + \sqrt {{a^2} + {b^2}} \)

Diện tích của tam giác là: \(\frac{1}{2}.\sqrt {{a^2} + {b^2}} .h\)

Theo bài ra ta có:

\(a + b + \sqrt {{a^2} + {b^2}} = \frac{1}{2}\sqrt {{a^2} + {b^2}} .h\)

\( \Rightarrow h = \frac{{2a + 2b + 2\sqrt {{a^2} + {b^2}} }}{{\sqrt {{a^2} + {b^2}} }} = 2 + 2\frac{{a + b}}{{\sqrt {{a^2} + {b^2}} }}\)

Theo bđt bunhiacopxki, ta có:

(1.a + 1.b)2 ≤ (12 + 12)(a2 + b2)

\( \Leftrightarrow a + b \le \sqrt {2\left( {{a^2} + {b^2}} \right)} \)

\( \Rightarrow h \le 2 + 2.\frac{{\sqrt {2\left( {{a^2} + {b^2}} \right)} }}{{\sqrt {{a^2} + {b^2}} }} = 2 + 2\sqrt 2 \).

Vậy \({h_{\max }} = 2 + 2\sqrt 2 \) (đvđd).

Câu hỏi cùng chủ đề

Xem tất cả