Câu hỏi:
12/03/2024 48
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
A. 3x2 ‒ 3x + 6;
B. (x ‒1)6 ‒ x7 ‒ 3;
C. 3x2 ‒ 3x + 7;
D. 3x2023 – 8x + 4.
Trả lời:
Đáp án đúng là: D
Xét hàm số f(x) = 3x2023 – 8x + 4.
Hàm số liên tục trên ℝ nên cũng liên tục trên đoạn [0; 1].
f(0) = 4; f(1) = ‒1 nên f(0) . f(1) < 0.
Vậy phương trình có nghiệm trong khoảng (0; 1).
Đáp án đúng là: D
Xét hàm số f(x) = 3x2023 – 8x + 4.
Hàm số liên tục trên ℝ nên cũng liên tục trên đoạn [0; 1].
f(0) = 4; f(1) = ‒1 nên f(0) . f(1) < 0.
Vậy phương trình có nghiệm trong khoảng (0; 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng
Câu 12:
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
Câu 13:
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Câu 14:
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Câu 15:
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng