Câu hỏi:
12/03/2024 52
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng
A. Phương trình không có nghiệm với mọi m;
B. Phương trình luôn có nghiệm với mọi m;
C. Tùy vào giá trị của m phương trình sẽ có nghiệm hoặc không có nghiệm;
D. Không có đáp án nào đúng.
Trả lời:
Đáp án đúng là: C
Xét hàm số f(x) = m(x ‒ 1)(x + 2) + 2x + 1.
Hàm số f(x) liên tục trên ℝ nên cũng liên tục trên (‒2;1).
Ta có f(‒2) = ‒3; f(1) = 3, vì f(‒2) . f(1) < 0.
Suy ra phương trình f(x) = 0 có nghiệm trong khoảng (‒2; 1).
Vậy phương trình luôn có nghiệm với mọi m.
Đáp án đúng là: C
Xét hàm số f(x) = m(x ‒ 1)(x + 2) + 2x + 1.
Hàm số f(x) liên tục trên ℝ nên cũng liên tục trên (‒2;1).
Ta có f(‒2) = ‒3; f(1) = 3, vì f(‒2) . f(1) < 0.
Suy ra phương trình f(x) = 0 có nghiệm trong khoảng (‒2; 1).
Vậy phương trình luôn có nghiệm với mọi m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 11:
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
Câu 12:
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Câu 13:
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
Trong các phương trình dưới đây, phương trình có nghiệm trong khoảng (0;1) là
Câu 14:
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a) . f(b) < 0 thì số nghiệm của phương trình f(x) = 0 trên đoạn (a; b) là
Câu 15:
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng
Cho phương trình m(x ‒ 1)(x + 2) + 2x + 1 = 0. Khẳng định nào sau đây là đúng