Trên cạnh BC của tam giác ABC lấy các điểm M, N không trùng với B và C sao cho BM = MN =NC
150
11/01/2024
Bài 4.60 trang 70 SBT Toán 10 Tập 1: Trên cạnh BC của tam giác ABC lấy các điểm M, N không trùng với B và C sao cho BM = MN =NC.
a) Chứng minh rằng hai tam giác ABC và AMN có cùng trọng tâm.
b) Gọi G là trọng tâm của tam giác ABC. Đặt và Hãy biểu thị các vectơ sau qua hai vectơ và
Trả lời
a) Giả sử G, G' lần lượt là trọng tâm của DABC, DAMN.
Sử dụng kết quả của Ví dụ 3, Bài 9 (trang 53, Sách bài tập, Toán 10, Tập một) ta có:
Mặt khác: M, N lần lượt lấy theo thứ tự trên cạnh BC sao cho BM = MN = NC nên ta có:
Suy ra điểm G và G' trùng nhau.
Do đó hai tam giác ABC và AMN có cùng trọng tâm.
b) • Vì G là trọng tâm của tam giác ABC nên
• Từ BM = MN = NC suy ra
Theo Nhận xét ở Ví dụ 2, Bài 9 (trang 53, Sách bài tập, Toán 10, Tập một), với điểm G ta có:
Tương tự ta cũng có:
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài tập cuối chương 4
Bài 12: Số gần đúng và sai số
Bài 13: Các số đặc trưng đo xu thế trung tâm
Bài 14: Các số đặc trưng đo độ phân tán