Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2). a) Chứng minh rằng A, B, C
183
11/01/2024
Bài 4.68 trang 71 SBT Toán 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(–2; 1), B(1; 4) và C(5; −2).
a) Chứng minh rằng A, B, C là ba đỉnh của một tam giác. Tìm toạ độ trọng tâm G của tam giác ABC.
b) Tìm toạ độ trực tâm H và tâm đường tròn ngoại tiếp I của tam giác ABC.
Trả lời
a) Với A(–2; 1), B(1; 4) và C(5; −2) ta có:
= (3; 3) và = (7; –3)
Vì nên hai vectơ và không cùng phương
Do đó ba điểm A, B, C không thẳng hàng
Vậy A, B, C là ba đỉnh của một tam giác.
Vì G là trọng tâm của tam giác ABC nên ta có:
Vậy tọa độ trọng tâm của tam giác ABC là: .
b) *Tìm tọa độ trực tâm H của tam giác ABC:
Vì H là trực tâm của tam giác ABC nên AH ⊥ BC và BH ⊥ AC
Hay và
Giả sử H(x; y) là tọa độ trực tâm tam giác ABC
Với A(–2; 1), B(1; 4), C(5; −2) và H(x; y) ta có:
• = (x + 2; y – 1) và = (4; –6)
= 4.(x + 2) – 6.(y – 1) = 0
4x – 6y = –14
2x – 3y = –7 (1)
• = (x – 1; y – 4) và = (7; –3)
= 7.(x – 1) – 3.(y – 4) = 0
7x – 3y = –5 (2)
Trừ vế theo vế (2) cho (1) ta có: 5x = 2
x =
Thay x = vào (1) ta được: 2. – 3y = –7
Vậy tọa độ trực tâm của tam giác ABC là
* Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC:
Theo kết quả phần a) của Bài 4.15, trang 54, Sách Bài tập, Toán 10, tập một ta có:
với M là trung điểm của BC.
Giả sử I(a; b) là tọa độ tâm đường tròn ngoại tiếp tam giác ABC
Với A(–2; 1), B(1; 4), C(5; −2), và I(a; b) ta có:
•
• M là trung điểm của BC nên
M(3; 1)
= (3 – a; 1 – b)
= (6 – 2a; 2 – 2b)
Ta có
Vậy tọa độ tâm đường tròn ngoại tiếp tam giác ABC là
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 10: Vectơ trong mặt phẳng tọa độ
Bài 11: Tích vô hướng của hai vectơ
Bài tập cuối chương 4
Bài 12: Số gần đúng và sai số
Bài 13: Các số đặc trưng đo xu thế trung tâm
Bài 14: Các số đặc trưng đo độ phân tán