Cho tứ giác lồi ABCD không có hai cạnh nào song song. Gọi E, F theo thứ tự là trung điểm AB, CD

Bài 4.64 trang 70 SBT Toán 10 Tập 1: Cho tứ giác lồi ABCD không có hai cạnh nào song song. Gọi E, F theo thứ tự là trung điểm AB, CD. Gọi K, L, M, N lần lượt là trung điểm của AF, CE, BF, DE.

a) Chứng minh rằng tứ giác KLMN là một hình bình hành.

b) Gọi I là giao điểm của KM, LN. Chứng minh rằng E, I, F thẳng hàng.

Trả lời

Sách bài tập Toán 10 Bài tập cuối chương 4 - Kết nối tri thức (ảnh 1)

 F là trung điểm của CD Fnên FC=DF.

• Vì K là trung điểm của AF, L là trung điểm của CE, theo kết quả của Bài tập 4.12, trang 58, Toán 10, Tập một, ta có:

2KL=AE+FC=EB+DF

Tương tự:

M là trung điểm của BF, N là trung điểm của DE, nên ta có:

EB+DF=2NM

Do đó 2KL=2NM

KL=NM

 KL = NM và KL // NM

 KLMN là một hình bình hành.

b) Do KLMN là hình bình hành

Mà I là giao điểm của KM, LN nên I là trung điểm chung của KM, LN.

Khi đó ta có:

2EI=EN+EL=12ED+12EC

=12ED+EC=12.EF (do F là trung điểm của DC)

Do đó 2EI=12.EF

EI=14.EF

Suy ra hai vectơ EI và EF cùng phương

Do đó E, I, F thẳng hàng.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng đo độ phân tán

Câu hỏi cùng chủ đề

Xem tất cả