Hoặc
Giả sử: 4sin2x+1=Asinx+Bcosxcosx+3sinx+Csin2x+cos2x⇔4sin2x+1=A3+Csin2x+A+B3sinxcosx+B+Ccos2xĐồng nhất hai vế ta có: A3+C=4A+B3=0B+C=1⇒A=3B=−1C=2.⇒I=∫π6π33sinx−cosxcosx+3sinx+2cosx+3sinxdx=∫π6π33sinx−cosxdx+2∫π6π3dxcosx+3sinx=−3cosx−sinxπ6π3+J=2−3+JJ=2∫π6π3dxcosx+3sinx=∫π6π3dxsinx+π6=∫π6π3dx2sinx2+π12cosx2+π12=12∫π6π3dxtanx2+π12cos2x2+π12=∫π6π3dtanx2+π12tanx2+π12=lntanx2+π12π6π3=12ln3⇒I=2−3+12ln3.