Hoặc
* Xét I=∫e2xsin3xdxĐặt u=e2xdv=sin3xdx⇒du=2e2xdxv=−13cos3xKhi đó I=−13e2x.cos3x+23∫e2xcos3xdx (1)* Xét J=∫e2xcos3xdxĐặt u1=e2xdv1=cos3xdx⇒du1=2e2xdxv1=13sin3xJ=13e2x.sin3x−23∫e2xsin3xdx=13e2x.sin3x−23I(2)Thay (2) vào (1) ta có: I=−13e2x.cos3x+2313e2x.sin3x−23IVậy I=e2x13.2sin3x−3cos3x+C.