Tính giá trị của biểu thức A = x^6 - x^4 - x( x^3 - x) biết x^3 - x = 9 A. A = 0 B. A = 9 C. A = 81 D. A = 27
11
13/09/2024
Tính giá trị của biểu thức \[A = {x^6} - {x^4} - x\left( {{x^3} - x} \right)\] biết \[{x^3} - x = 9\]
A. A = 0
B. A = 9
C. A = 81
D. A = 27
Trả lời
Lời giải
Đáp án đúng là: C
Ta có: \[A = {x^6} - {x^4} - x\left( {{x^3} - x} \right)\]
\[ = {x^3}.{x^3} - {x^3}.x - x\left( {{x^3} - x} \right)\]
\[ = {x^3}({x^3} - x) - x({x^3} - x)\]
\[ = \left( {{x^3} - x} \right)\left( {{x^3} - x} \right)\]\[ = {\left( {{x^3} - x} \right)^2}\]
Với \[{x^3} - x = 9\] giá trị của biểu thức \[{\rm{A}} = {9^2} = 81\].