Câu hỏi:

01/04/2024 39

Tính đạo hàm cấp n của hàm số \(y = \frac{{2x + 1}}{{x + 2}}\)

A.  \({y^{(n)}} = \frac{{{{(1)}^{n - 1}}.3.n!}}{{{{(x + 2)}^{n + 1}}}}\)

B. \({y^{(n)}} = \frac{{{{( - 1)}^{n - 1}}.n!}}{{{{(x + 2)}^{n + 1}}}}\)

C. \({y^{(n)}} = \frac{{{{( - 1)}^{n - 1}}.3.n!}}{{{{(x - 2)}^{n + 1}}}}\)

D. \({y^{(n)}} = \frac{{{{( - 1)}^{n - 1}}.3.n!}}{{{{(x + 2)}^{n + 1}}}}\)

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Ta có \(y' = \frac{3}{{{{(x + 2)}^2}}},y'' = - \frac{{3{{\left[ {{{(x + 2)}^2}} \right]}^'}}}{{{{(x + 2)}^4}}} = \frac{{ - 3.2}}{{{{(x + 2)}^3}}}\)

\(y''' = \frac{{3.2.3}}{{{{(x + 2)}^4}}}\). Ta chứng minh \({y^{(n)}} = \frac{{{{( - 1)}^{n - 1}}.3.n!}}{{{{(x + 2)}^{n + 1}}}}\)

\( \bullet \) Với \(n = 1 \Rightarrow y' = \frac{{{{( - 1)}^0}.3}}{{{{(x + 2)}^2}}} = \frac{3}{{{{(x + 2)}^2}}}\) đúng

\( \bullet \) Giả sử \({y^{(k)}} = \frac{{{{( - 1)}^{k - 1}}.3.k!}}{{{{(x + 2)}^{k + 1}}}}\)

\( \Rightarrow {y^{(k + 1)}} = \left( {{y^{(k)}}} \right)' = - \frac{{{{( - 1)}^{k - 1}}.3.k!.\left[ {{{(x + 2)}^{k + 1}}} \right]'}}{{{{(x + 2)}^{2k + 2}}}} = \frac{{{{( - 1)}^k}.3.(k + 1)!}}{{{{(x + 2)}^{k + 2}}}}\)

Theo nguyên lí quy nạp ta có điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số \[y = \frac{x}{{x - 2}}\]có đạo hàm cấp hai là:

Xem đáp án » 01/04/2024 129

Câu 2:

Nếu \(f''\left( x \right) = \frac{{2\sin x}}{{{{\cos }^3}x}}\) thì \(f\left( x \right)\) bằng

Xem đáp án » 01/04/2024 114

Câu 3:

Tính đạo hàm cấp \(n\) của hàm số \(y = \cos 2x\)

Xem đáp án » 01/04/2024 107

Câu 4:

Cho hàm số \[y = {\left( {ax + b} \right)^5}\] với \(a\), \(b\) là tham số. Khi đó :

Xem đáp án » 01/04/2024 103

Câu 5:

Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :

\(\left( I \right):y' = f'\left( x \right)\)\( = - 1 - \frac{2}{{{{(x - 1)}^2}}} < 0,\forall x \ne 1\).               \(\left( {II} \right):y'' = f''\left( x \right)\)\( = \frac{4}{{{{(x - 1)}^2}}} > 0,\forall x \ne 1\).

Mệnh đề nào đúng?

Xem đáp án » 01/04/2024 85

Câu 6:

Cho hàm số \(f\left( x \right) = {\sin ^3}x + {x^2}\). Giá trị \(f''\left( {\frac{\pi }{2}} \right)\) bằng

Xem đáp án » 01/04/2024 81

Câu 7:

Hàm số \(y = \frac{{ - 2{x^2} + 3x}}{{1 - x}}\) có đạo hàm cấp \(2\) bằng :

Xem đáp án » 01/04/2024 80

Câu 8:

Tính đạo hàm cấp \(n\) của hàm số \(y = \frac{x}{{{x^2} + 5x + 6}}\)

Xem đáp án » 01/04/2024 79

Câu 9:

Cho hàm số \(y = \sin 2x\). Tính \(y''\)

Xem đáp án » 01/04/2024 67

Câu 10:

Hàm số \(y = \sqrt {2x + 5} \) có đạo hàm cấp hai bằng:

Xem đáp án » 01/04/2024 64

Câu 11:

Tính đạo hàm cấp n của hàm số \(y = \frac{1}{{ax + b}},a \ne 0\)

Xem đáp án » 01/04/2024 62

Câu 12:

Tính đạo hàm cấp n của hàm số \(y = \sqrt {2x + 1} \)

Xem đáp án » 01/04/2024 62

Câu 13:

Hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp \(5\) bằng :

Xem đáp án » 01/04/2024 60

Câu 14:

Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}\). Giá trị \(f''\left( 0 \right)\) bằng

Xem đáp án » 01/04/2024 55

Câu 15:

Cho hàm số \[y = \frac{1}{{x - 3}}\]. Khi đó :

Xem đáp án » 01/04/2024 55