Tìm tất cả các giá trị thực của tham số m để điểm M( 2m3; m) tạo với hai điểm cực

Tìm tất cả các giá trị thực của tham số m để điểm M( 2m3; m) tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số y = 2x3 – 3(2m + 1)x2 + 6m(m + 1)x + 1 (C) một tam giác có diện tích nhỏ nhất.

A. −1;

B. 0;

C. 1;

D. 2.

Trả lời

Ta có: y’ = 6x2 – 6(2m + 1)x + 6m(m + 1)

y’ = 0 \( \Leftrightarrow \)6x2 – 6(2m + 1)x + 6m(m + 1) = 0

\( \Leftrightarrow \)x2 – (2m + 1)x + m(m + 1) = 0

∆ = 4m2 + 4m + 1 – 4(m2 + m) = 1

Suy ra y’ = 0 có hai nghiệm: \[\left[ \begin{array}{l}{x_1} = \frac{{2m + 1 + 1}}{2} = m + 1\\{x_2} = \frac{{2m + 1 - 1}}{2} = m\end{array} \right.\].

Do đó hàm số luôn có cực đại và cực tiểu với mọi m.

+) Tọa độ các điểm cực đại và cực tiểu của đồ thị là: A(m; 2m3 + 3m2 + 1);

B(m + 1; 2m3 + 3m2).

Suy ra \(AB = \sqrt {{{(m - m - 1)}^2} + {{\left( {2{m^3} + 3{m^2} + 1 - 2{m^3} - 3{m^2}} \right)}^2}} = \sqrt 2 \).

Và phương trình đường thẳng AB là:

x + y – 2m3 – 3m2 – m – 1 = 0.

Do đó ∆MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất.

\({d_{(M;AB)}} = \frac{{\left| {2{m^3} + m - 2{m^3} - 3{m^2} - m - 1} \right|}}{{\sqrt 2 }} = \frac{{3{m^2} + 1}}{{\sqrt 2 }} \ge \frac{1}{{\sqrt 2 }}\).

Suy ra \(\min {d_{(M;AB)}} = \frac{1}{{\sqrt 2 }}\).

Dấu “=” xảy ra khi m = 0.

Vậy với m = 0 thì thỏa mãn yêu cầu bài toán.

Câu hỏi cùng chủ đề

Xem tất cả