Tìm giá trị lớn nhất của biểu thức: A = ab/)a + b) + bc( b + c) + ac(a + c). Biết a + b + c = 6

Tìm giá trị lớn nhất của biểu thức: \[A = \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ac}}{{a + c}}\].

Biết a + b + c = 6.

Trả lời

Áp dụng bất đẳng thức Cô-si ta có:

\[{(a + b)^2} \ge 4ab\]\[ \Leftrightarrow \frac{{a + b}}{4} \ge \frac{{ab}}{{a + b}}\,\,\,\,\,(1)\]

\[{(b + c)^2} \ge 4bc\]\[ \Leftrightarrow \frac{{b + c}}{4} \ge \frac{{bc}}{{b + c}}\,\,\,\,\,(2)\]

\[{(c + a)^2} \ge 4ac\]\[ \Leftrightarrow \frac{{c + a}}{4} \ge \frac{{ca}}{{c + a}}\,\,\,\,\,(3)\]

Cộng 3 vế (1); (2) và (3) ta có:

\[\frac{{a + b}}{4} + \frac{{b + c}}{4} + \frac{{c + a}}{4} \ge \frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}}\]

Hay \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{(a + b) + (b + c) + (c + a)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{2(a + b + c)}}{4}\]

Suy ra \[\frac{{ab}}{{a + b}} + \frac{{bc}}{{b + c}} + \frac{{ca}}{{c + a}} \le \frac{{a + b + c}}{2} = \frac{6}{2} = 3\]

Do đó, giá trị lớn nhất của A = 3 Û a = b = c = 2.

Vậy giá trị lớn nhất của A = 3.

Câu hỏi cùng chủ đề

Xem tất cả