Tìm điều kiện của m để mỗi hàm số sau đây là một hàm số bậc hai: a) y = (1 – 3m)x^2 + 3

Bài 2 trang 59 Toán lớp 10 Tập 1Tìm điều kiện của m để mỗi hàm số sau đây là một hàm số bậc hai:

a) y = (1 – 3m)x2 + 3;

b) y = (4m – 1)(x – 7)2;

c) y = 2(x2 + 1) + 11 – m.

 

Trả lời

a) Hàm số y = (1 – 3m)x2 + 3 là hàm số bậc hai khi và chỉ khi

1 – 3m ≠ 0

⇔ 3m ≠ 1

m13 

Vậy m13 thì hàm số đã cho là hàm số bậc hai.

b) Có:

y = (4m – 1)(x – 7)2 = (4m – 1)(x2 – 14x + 49) = (4m – 1)x2 – 14(4m – 1)x + 49(4m – 1)

Hàm số này là hàm số bậc hai khi và chỉ khi

4m – 1 ≠ 0

⇔ 4m ≠ 1

m14 

Vậy m14 thì hàm số đã cho là hàm số bậc hai.

c) Có:

y = 2(x2 + 1) + 11 – m = 2x2 + 2 + 11 – m = 2x2 + 13 – m

Hàm số này luôn là hàm số bậc hai với mọi giá trị của m.

Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Hàm số và đồ thị

Bài 2: Hàm số bậc hai

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Câu hỏi cùng chủ đề

Xem tất cả