Câu hỏi:

21/12/2023 102

Tập nghiệm của bất phương trình – x2 + 6x + 7 > 0.

A. S = (− 1; 7);

Đáp án chính xác

B. S = [− 7; 1];

C. S = (−3; 1];

D. S = (− ∞; −1)  [7; +∞).

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Tam thức bậc hai – x2 + 6x + 7 có hai nghiệm x = – 1, x = 7 và có hệ số a = – 1 < 0.

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho tam thức – x2 + 6x + 7 mang dấu “+” là (– 1; 7).

Vậy tập nghiệm của bất phương trình – x2 + 6x + 7 > 0 là S = (– 1; 7).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm m để bất phương trình (m – 1)x2 – 2(m + 1)x + 3(m – 2) > 0 có nghiệm đúng với mọi x ℝ.

Xem đáp án » 21/12/2023 518

Câu 2:

Tìm tất cả các giá trị thực của tham số m để bất phương trình sau vô nghiệm f(x) = (m – 3)x2 + (m + 2)x – 4 > 0.

Xem đáp án » 21/12/2023 180

Câu 3:

Tập nghiệm của bất phương trình 2x2 + x + 2 > 0 là:

Xem đáp án » 21/12/2023 144

Câu 4:

Tìm tập nghiệm của bất phương trình 1x25x+4< 1x27x+10.

Xem đáp án » 21/12/2023 137

Câu 5:

Tìm các giá trị của a sao cho với mọi x, ta luôn có: −1 ≤ x2+5x+a2x23x+2< 7.

Xem đáp án » 21/12/2023 104

Câu 6:

Tìm tập xác định của hàm số y = x2+5x+42x2+3x+1.

Xem đáp án » 21/12/2023 103

Câu 7:

Tập nghiệm của bất phương trình (x2 – 3x + 1)2 + 3x2 – 9x + 5 > 0 là

Xem đáp án » 21/12/2023 81

Câu hỏi mới nhất

Xem thêm »
Xem thêm »