Quan sát hình thang ABCD (AB // CD, AB < CD) có hai đường chéo AC và BD bằng nhau. Kẻ BE song song với AC

Hoạt động 4 trang 102, 103 Toán 8 Tập 1: Quan sát hình thang ABCD (AB // CD, AB < CD) có hai đường chéo AC và BD bằng nhau. Kẻ BE song song với AC (E thuộc đường thẳng CD) (Hình 27).

a) Hai tam giác ABC và ECB có bằng nhau hay không?

b) So sánh các cặp góc: BED^  BDE^  ACD^  BED^.

c) Hai tam giác ACD và BDC có bằng nhau hay không? Từ đó, hãy so sánh ADC^  BCD^.

d) ABCD có phải là hình thang cân hay không?

Hoạt động 4 trang 102, 103 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Trả lời

a) Do AB // CD hay AB // CE nên ABC^=ECB^ (so le trong).

Do BE // AC nên ACB^=EBC^ (so le trong).

Xét ΔABC và ΔECB có:

ABC^=ECB^ (chứng minh trên);

BC là cạnh chung;

ACB^=EBC^ (chứng minh trên).

Do đó ΔABC = ΔECB (g.c.g).

b) Do ΔABC = ΔECB (theo câu a) nên AC = EB (hai cạnh tương ứng)

Mà AC = BD (giả thiết)

Suy ra BD = BE nên tam giác BDE là tam giác cân tại B.

Suy ra BDE^=BED^ (tính chất tam giác cân).

Do BE // AC nên ACD^=BED^ (đồng vị).

c) Ta có BDE^=BED^  ACD^=BED^ (theo câu b) nên BDE^=ACD^=BED^.

Xét ΔACD và ΔBDC có:

DC là cạnh chung;

BDE^=ACD^ (chứng minh trên);

AC = BD (giả thiết)

Do đó ΔACD = ΔBDC (c.g.c)

Suy ra ADC^=BCD^ (hai góc tương ứng).

d) Hình thang ABCD có ADC^, BCD^ cùng kề với đáy DC và ADC^=BCD^ nên ABCD là hình thang cân.

Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:

Bài 1: Định lí Pythagore

Bài 2: Tứ giác

Bài 3: Hình thang cân

Bài 4: Hình bình hành

Câu hỏi cùng chủ đề

Xem tất cả