Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip (Hình 32)
1.4k
16/05/2023
Câu hỏi khởi động trang 32 Toán 11 Tập 1: Một vệ tinh nhân tạo bay quanh Trái Đất theo một quỹ đạo là đường elip (Hình 32). Độ cao h (km) của vệ tinh so với bề mặt Trái Đất được xác định bởi công thức h = 550 + 450cost (Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2021), trong đó t là thời gian tính bằng phút kể từ lúc vệ tinh bay vào quỹ đạo. Tại thời điểm t bằng bao nhiêu thì vệ tinh cách mặt đất 1 000 km; 250 km; 100 km?
Trên thực tế, có nhiều bài toán dẫn đến việc giải một trong các phương trình có dạng: sinx = m, cosx = m, tanx = m, cotx = m, trong đó x là ẩn số, m là số thực cho trước. Các phương trình đó là các phương trình lượng giác cơ bản.
Trả lời
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
• Để vệ tinh cách mặt đất 1 000 km thì 550 + 450cost = 1 000
450cost=450
cost = 1
t = k2 (k, t0)
t = k2. = 100k (k{0; 1; 2; 3;...}
Vậy tại các thời điểm t = 100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 1 000 km.
• Để vệ tinh cách mặt đất 250 km thì 550 + 450cost = 250
450cost = -300
cost = -
(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp ta được kết quả gần đúng là 2,3)
Vậy tại các thời điểm t +100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 250 km.
• Để vệ tinh cách mặt đất 100 km thì 550 + 450cost = 100
450cost = -450
cost = -1
t = +k2 (kZ, t0).
t = 50+100k (k{0;1;2;3;...}
Vậy tại các thời điểm t = 50 + 100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 100 km.
Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Các phép biến đổi lượng giác
Bài 3: Hàm số lượng giác và đồ thị
Bài 4: Phương trình lượng giác cơ bản
Bài tập cuối chương 1
Bài 1: Dãy số
Bài 2: Cấp số cộng