Câu hỏi:
19/01/2024 84
Hệ số của x3 trong khai triển của (3 – 2x)5 là
Hệ số của x3 trong khai triển của (3 – 2x)5 là
A. 4608;
A. 4608;
B. 720;
B. 720;
C. – 720
C. – 720
D. – 4608.
D. – 4608.
Trả lời:
Đáp án đúng là: C
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là \(C_n^k\)an – k .bk (k ≤ n)
Thay a = 3, b = –2x vào trong công thức ta có \(C_5^k\)35 – k .(– 2x)k = (– 2)k \(C_5^k\)35 – k .(x)k
Vì tìm hệ số của x3 nên ta có xk = x3 \( \Rightarrow \) k = 3
Hệ số của x7 trong khai triển là (– 2)3\(C_5^3\).32 = – 720.
Đáp án đúng là: C
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là \(C_n^k\)an – k .bk (k ≤ n)
Thay a = 3, b = –2x vào trong công thức ta có \(C_5^k\)35 – k .(– 2x)k = (– 2)k \(C_5^k\)35 – k .(x)k
Vì tìm hệ số của x3 nên ta có xk = x3 \( \Rightarrow \) k = 3
Hệ số của x7 trong khai triển là (– 2)3\(C_5^3\).32 = – 720.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Biết hệ số của x3 trong khai triển của (1 – 3x)n là – 270. Giá trị của n là
Biết hệ số của x3 trong khai triển của (1 – 3x)n là – 270. Giá trị của n là
Câu 4:
Tìm số hạng chứa x4 trong khai triển \({\left( {{x^2} - \frac{1}{x}} \right)^n}\) biết \(A_n^2 - C_n^2 = 10\)
Tìm số hạng chứa x4 trong khai triển \({\left( {{x^2} - \frac{1}{x}} \right)^n}\) biết \(A_n^2 - C_n^2 = 10\)
Câu 5:
Biểu thức \[C_5^2\](5x)3(- 6y2)2 là một số hạng trong khai triển nhị thức nào dưới đây
Biểu thức \[C_5^2\](5x)3(- 6y2)2 là một số hạng trong khai triển nhị thức nào dưới đây
Câu 7:
Trong khai triển \[{\left( {x + \frac{8}{{{x^2}}}} \right)^5}\] số hạng chứa x2 là:
Trong khai triển \[{\left( {x + \frac{8}{{{x^2}}}} \right)^5}\] số hạng chứa x2 là:
Câu 9:
Trong khai triển nhị thức (a + 2)2n + 1 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
Trong khai triển nhị thức (a + 2)2n + 1 (n \( \in \) ℕ). Có tất cả 6 số hạng. Vậy n bằng
Câu 10:
Với n là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 10\), hệ số chứa x2 trong khai triển của biểu thức \({\left( {{x^3} + \frac{2}{{{x^2}}}} \right)^n}\) bằng
Với n là số nguyên dương thỏa mãn \(C_n^1 + C_n^2 = 10\), hệ số chứa x2 trong khai triển của biểu thức \({\left( {{x^3} + \frac{2}{{{x^2}}}} \right)^n}\) bằng
Câu 11:
Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (2a + b)4 bằng
Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (2a + b)4 bằng
Câu 12:
Trong khai triển nhị thức \({\left( {2{x^2} + \frac{1}{x}} \right)^n}\) hệ số của x3 là \({2^2}C_n^1\) Giá trị của n là
Trong khai triển nhị thức \({\left( {2{x^2} + \frac{1}{x}} \right)^n}\) hệ số của x3 là \({2^2}C_n^1\) Giá trị của n là