Hãy so sánh số trung bình, phương sai và độ lệch chuẩn của ba mẫu số liệu sau: Mẫu 1: 0,1; 0,3; 0,5; 0,5; 0,3; 0,7
189
12/06/2023
Bài 4 trang 125 Toán lớp 10 Tập 1: Hãy so sánh số trung bình, phương sai và độ lệch chuẩn của ba mẫu số liệu sau:
Mẫu 1: 0,1; 0,3; 0,5; 0,5; 0,3; 0,7.
Mẫu 2: 1,1; 1,3; 1,5; 1,5; 1,3; 1,7.
Mẫu 3: 1; 3; 5; 5; 3; 7.
Trả lời
+) Mẫu 1:
Số trung bình của mẫu số liệu 1 là: 16(0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7) = 0,4.
Phương sai của mẫu số liệu 1 là: 16(0,12 + 0,32 + 0,52 + 0,52 + 0,32 + 0,72) - 0,42 = 11300.
Độ lệch chuẩn của mẫu số liệu 1 là: √11300=√3330.
+) Mẫu 2:
Số trung bình của mẫu số liệu 2 là: 16(1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7) = 1,4.
Phương sai của mẫu số liệu 2 là: 16(1,12 + 1,32 + 1,52 + 1,52 + 1,32 + 1,72) - 1,42 = 11300.
Độ lệch chuẩn của mẫu số liệu 2 là: √11300=√3330.
+) Mẫu 3:
Số trung bình của mẫu số liệu 3 là: 16(1 + 3 + 5 + 5 + 3 + 7) = 4.
Phương sai của mẫu số liệu 3 là: 16(12 + 32 + 52 + 52 + 32 + 72) - 42 = 113.
Độ lệch chuẩn của mẫu số liệu 3 là: √113=√333.
Số trung bình của mẫu 1 nhỏ hơn mẫu 2 và số trung bình của mẫu 2 nhỏ hơn mẫu 3.
Phương sai của mẫu số 1 bằng mẫu số 2 và bằng 1100 phương sai của mẫu số 3.
Độ lệch chuẩn của mẫu số 1 bằng mẫu số 2 và bằng 110 độ lệch chuẩn của mẫu số 3.
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Bài tập cuối chương 6
Bài 1: Dùng máy tính cầm tay để tính toán với số gần đúng và tính các số đặc trưng của mẫu số liệu thống kê
Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê