Lời giải
a) Ta có sin 5x + cos 5x = – 1
\( \Leftrightarrow \sqrt 2 \sin \left( {5x + \frac{\pi }{4}} \right) = - 1\)
\( \Leftrightarrow \sin \left( {5x + \frac{\pi }{4}} \right) = - \frac{1}{{\sqrt 2 }}\)
\( \Leftrightarrow \sin \left( {5x + \frac{\pi }{4}} \right) = \sin \left( { - \frac{\pi }{4}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}5x + \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \\5x + \frac{\pi }{4} = \pi - \left( { - \frac{\pi }{4}} \right) + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{{10}} + k\frac{{2\pi }}{5}\\x = \frac{\pi }{5} + k\frac{{2\pi }}{5}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
b) Ta có cos 3x – cos 5x = sin x
\( \Leftrightarrow - 2\sin \frac{{3x + 5x}}{2}\sin \frac{{3x - 5x}}{2} = \sin x\)
\( \Leftrightarrow - 2\sin 4x\sin \left( { - x} \right) = \sin x\)
\( \Leftrightarrow 2\sin 4x\sin x - \sin x = 0\)
\( \Leftrightarrow \sin x\left( {2\sin 4x - 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin x = 0\\\sin 4x = \frac{1}{2}\end{array} \right.\).
+ Với sin x = 0 ta được x = kπ (k ∈ ℤ).
+ Với \(\sin 4x = \frac{1}{2}\)\( \Leftrightarrow \sin 4x = \sin \left( {\frac{\pi }{6}} \right)\)
\( \Leftrightarrow \left[ \begin{array}{l}4x = \frac{\pi }{6} + k2\pi \\4x = \pi - \frac{\pi }{6} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{24}} + k\frac{\pi }{2}\\x = \frac{{5\pi }}{{24}} + k\frac{\pi }{2}\end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
c) Ta có 2 cos2 x + cos 2x = 2
⇔ (2 cos2 x – 1) + cos 2x = 1
⇔ cos 2x + cos 2x = 1
⇔ 2cos 2x = 1
⇔ cos 2x = \(\frac{1}{2}\)
⇔ cos 2x = \(\cos \frac{\pi }{3}\)
⇔ 2x = \( \pm \frac{\pi }{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\).
d) Ta có sin4 x + cos4 x = \(\frac{1}{2}\)sin2 2x
\( \Leftrightarrow {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2} - 2{\sin ^2}x{\cos ^2}x = \frac{1}{2}{\sin ^2}2x\)
\( \Leftrightarrow 1 - \frac{1}{2}{\left( {2\sin x\cos x} \right)^2} = \frac{1}{2}{\sin ^2}2x\)
\( \Leftrightarrow 1 - \frac{1}{2}{\sin ^2}2x = \frac{1}{2}{\sin ^2}2x\)
\( \Leftrightarrow {\sin ^2}2x = 1\)
\( \Leftrightarrow \cos 2x = 0\) (do sin2 2x + cos2 2x = 1)
\( \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\)
\( \Leftrightarrow x = \frac{\pi }{4} + k\frac{\pi }{2}\,\,\left( {k \in \mathbb{Z}} \right)\).