Câu hỏi:
19/12/2023 84
Giá trị nhỏ nhất của hàm số y = x2 – mx + 10 là 2 khi:
A. m = 0 ;
B. m = ±1;
C. \(m = \pm 4\sqrt 2 \);
D. Không tồn tại giá trị m.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Xét hàm số y = x2 – mx + 10 có:
\(\frac{{ - b}}{{2a}} = \frac{{ - ( - m)}}{{2.1}} = \frac{m}{2}\)
\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - ({{( - m)}^2} - 4.1.10)}}{{4.1}} = \frac{{ - {m^2} + 40}}{4} = \frac{{ - {m^2}}}{4} + 10\)
Ta có, a = 1 > 0 nên hàm số đạt giá trị nhỏ nhất là \(\frac{{ - {m^2}}}{4} + 10\) tại \(x = \frac{m}{2}\)
Để hàm số đạt giá trị nhỏ nhất bằng 2 khi và chỉ khi
\(\frac{{ - {m^2}}}{4} + 10 = 2 \Leftrightarrow \frac{{ - {m^2}}}{4} = - 8 \Leftrightarrow {m^2} = 32 \Leftrightarrow m = \pm 4\sqrt 2 \)
Vậy \(m = \pm 4\sqrt 2 \) thỏa mãn yêu cầu đề bài.
Hướng dẫn giải:
Đáp án đúng là: C.
Xét hàm số y = x2 – mx + 10 có:
\(\frac{{ - b}}{{2a}} = \frac{{ - ( - m)}}{{2.1}} = \frac{m}{2}\)
\(\frac{{ - \Delta }}{{4a}} = \frac{{ - ({b^2} - 4ac)}}{{4a}} = \frac{{ - ({{( - m)}^2} - 4.1.10)}}{{4.1}} = \frac{{ - {m^2} + 40}}{4} = \frac{{ - {m^2}}}{4} + 10\)
Ta có, a = 1 > 0 nên hàm số đạt giá trị nhỏ nhất là \(\frac{{ - {m^2}}}{4} + 10\) tại \(x = \frac{m}{2}\)
Để hàm số đạt giá trị nhỏ nhất bằng 2 khi và chỉ khi
\(\frac{{ - {m^2}}}{4} + 10 = 2 \Leftrightarrow \frac{{ - {m^2}}}{4} = - 8 \Leftrightarrow {m^2} = 32 \Leftrightarrow m = \pm 4\sqrt 2 \)
Vậy \(m = \pm 4\sqrt 2 \) thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = x2 – 3x + m. Giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 12 là:
Câu 2:
Cho hàm số y = –x2 + 5x + m. Hãy xác định giá trị của m để hàm số đạt giá trị lớn nhất bằng 12.
Câu 3:
Cho hàm số y = –x2 + 6x – m. Giá trị của m để hàm số đạt giá trị lớn nhất bằng 6 là:
Câu 4:
Cho hàm số y = 2x2 + x + m. Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.
Câu 6:
Với giá trị nào của m thì giá trị lớn nhất của hàm số y = –x2 – 2x + 3 bằng giá trị nhỏ nhất của hàm số y = x2 – 5m + 2 ?