Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác đó

Bài 8 trang 57 SBT Toán 8 Tập 1Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn nửa chu vi của tứ giác đó.

Trả lời

Chứng minh rằng trong một tứ giác, tổng độ dài hai đường chéo lớn hơn nửa chu vi

Vẽ tứ giác ABCD. Gọi I là giao điểm của hai đường chéo AC và BD.

Theo bất đẳng thức tam giác, ta có:

IA + IB > AB (trong tam giác IAB)

IB + IC > BC (trong tam giác IBC)

IC + ID > CD (trong tam giác ICD)

IA + ID > AD (trong tam giác IAD)

Suy ra2(IA + IB + IC + ID) > AB + BC + CD + DA

Hay 2(AC + BD) > AB + BC + CD + DA

Vậy AC+BD>AB+BC+CD+DA2 hay tổng độ dài hai đường chéo của một tứ giác lớn hơn nửa chu vi của tứ giác đó.

Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 2 trang 44

Bài 1: Định lí Pythagore

Bài 2: Tứ giác

Bài 3: Hình thang – Hình thang cân

Bài 4: Hình bình hành – Hình thoi

Bài 5: Hình chữ nhật – Hình vuông

Câu hỏi cùng chủ đề

Xem tất cả