Chứng minh rằng: nếu 1 tam giác có 2 đường trung tuyến vuông góc với nhau thì tổng
50
04/05/2024
Chứng minh rằng: nếu 1 tam giác có 2 đường trung tuyến vuông góc với nhau thì tổng các bình phương của 2 đường trung tuyến này bằng bình phương của đường trung tuyến thứ ba.
Trả lời
Giả sử \[{\rm{\Delta }}ABC\] có hai đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ ba. Ta cần chứng minh \(A{D^2} = B{E^2} + C{F^2}\)
Trên tia đối của tia EF lấy điểm K sao cho EF = FK
Tứ giác AKCF có hai đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành → AK // FC. Mà \[FC \bot BE\] nên \(BE \bot AK\)(*)
Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình của \[{\rm{\Delta }}ABC\] \[ \to {\rm{ }}EF{\rm{ }} = \;{\rm{ }}\frac{1}{2}BC\]và EF // BC hay EK // BD (1)
Mà \[BD{\rm{ }} = {\rm{ }}\frac{1}{2}BC\](gt) nên EF = BD → EK = BD (do EF = EK theo cách chọn điểm phụ) (2)
Từ (1) và (2) suy ra EKDB là hình bình hành → EB // DK (**)
Từ (*) và (**) suy ra \[DK \bot AK\]→ \[{\rm{\Delta }}AKD\] vuông tại K \( \to A{K^2} + K{D^2} = A{D^2}\)(theo định lý Py-ta-go)
Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nên \(A{D^2} = B{E^2} + C{F^2}\) (đpcm)