Cho tam giác ABC = tam giác MNP. Tia phân giác của góc BAC và NMP lần lượt cắt các cạnh BC và NP tại D, Q

Bài 6 trang 92 Toán 7 Tập 2: Cho ABC = MNP. Tia phân giác của góc BAC và NMP lần lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ.

Trả lời

GT

ABC = MNP,

AD là tia phân giác của BAC^, 

MQ là tia phân giác của NMP^, 

KL

AD = MQ.

Chứng minh (Hình vẽ dưới đây):

 

Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (ảnh 1) 

Vì ABC = MNP (giả thiết) nên:

+) BAC^=NMP^ và B^=N^ (các cặp góc tương ứng);

+) AB = MN (hai cạnh tương ứng).

Ta có:

+) AD là tia phân giác của BAC^ (giả thiết) nên BAD^=12BAC^ (tính chất tia phân giác của một góc)

+) MQ là tia phân giác của NMP^ (giả thiết) nên NMQ^=12NMP^ (tính chất tia phân giác của một góc)

Mà BAC^=NMP^ (chứng minh trên) nên BAD^=NMQ^.

Xét ABD và MNQ có:

BAD^=NMQ^ (chứng minh trên),

AB = MN (chứng minh trên),

B^=N^ (chứng minh trên).

Suy ra ABD = MNQ (g.c.g).

Do đó AD = MQ (hai cạnh tương ứng).

Vậy AD = MQ.

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Bài 7: Tam giác cân

Bài 8: Đường vuông góc và đường xiên

Bài 9: Đường trung trực của một đoạn thẳng

Câu hỏi cùng chủ đề

Xem tất cả