Chọn câu trả lời đúng nhất. Phân tích đa thức thành nhân tử x^2y^2z + xy^2z^2 + x^2yz^2. A. x( xy^2z  + y^2z^2+  xyz^2) B. y( x^2yz  +  xyz^2+ x^2z^2

Chọn câu trả lời đúng nhất.

Phân tích đa thức thành nhân tử \[{x^2}{y^2}z + x{y^2}{z^2} + {x^2}y{z^2}\].

A. \[{\rm{x}}\left( {{\rm{x}}{{\rm{y}}^{\rm{2}}}{\rm{z + }}{{\rm{y}}^{\rm{2}}}{{\rm{z}}^{\rm{2}}}{\rm{ + xy}}{{\rm{z}}^{\rm{2}}}} \right)\]
B. \[{\rm{y}}\left( {{{\rm{x}}^{\rm{2}}}{\rm{yz + xy}}{{\rm{z}}^{\rm{2}}}{\rm{ + }}{{\rm{x}}^{\rm{2}}}{{\rm{z}}^{\rm{2}}}} \right)\]
C. \[{\rm{z}}\left( {{{\rm{x}}^{\rm{2}}}{{\rm{y}}^{\rm{2}}}{\rm{ + x}}{{\rm{y}}^{\rm{2}}}{\rm{z + }}{{\rm{x}}^{\rm{2}}}{\rm{yz}}} \right)\]
D. \[{\rm{xyz}}\left( {{\rm{xy + yz + xz}}} \right)\]

Trả lời

Lời giải

Đáp án đúng là: D

Ta thấy nhân tử chung của các đơn thức thành phần của đa thức trên là xyz.

Khi đó \[{x^2}{y^2}z + x{y^2}{z^2} + {x^2}y{z^2}\]

\[ = {\rm{xyz}}\left( {{\rm{xy + yz + xz}}} \right)\].

Câu hỏi cùng chủ đề

Xem tất cả