Cho x, y,z là ba số dương thoả mãn x + y + z  3. Chứng minh: x / (x + căn bậc hai

Cho x, y,z là ba số dương thoả mãn x + y + z = 3. Chứng minh: 

\(\frac{x}{{x + \sqrt {3x + yz} }} + \frac{y}{{y + \sqrt {3y + zx} }} + \frac{z}{{z + \sqrt {3z + xy} }} \le 1\).

Trả lời

Áp dụng bất đẳng thức Bunhiacốpxki và kết hợp với giả thiết x + y + z = 3, ta có:

\(\frac{x}{{x + \sqrt {3x + yz} }} + \frac{y}{{y + \sqrt {3y + zx} }} + \frac{z}{{z + \sqrt {3z + xy} }}\)

\( = \frac{x}{{x + \sqrt {x\left( {x + y + z} \right) + yz} }} + \frac{y}{{y + \sqrt {\left( {x + y + z} \right)y + zx} }} + \frac{z}{{z + \sqrt {\left( {x + y + z} \right)z + xy} }}\)

\[ = \frac{x}{{x + \sqrt {\left( {x + y} \right)\left( {x + z} \right)} }} + \frac{y}{{y + \sqrt {\left( {y + z} \right)\left( {y + x} \right)} }} + \frac{z}{{z + \sqrt {\left( {z + x} \right)\left( {z + y} \right)} }}\]

\( \le \frac{x}{{x + \sqrt {{{\left( {\sqrt {xy} + \sqrt {xz} } \right)}^2}} }} + \frac{y}{{y + \sqrt {{{\left( {\sqrt {xy} + \sqrt {yz} } \right)}^2}} }} + \frac{z}{{z + \sqrt {{{\left( {\sqrt {xz} + \sqrt {yz} } \right)}^2}} }}\)

\[ = \frac{x}{{x + \sqrt {xy} + \sqrt {xz} }} + \frac{y}{{y + \sqrt {xy} + \sqrt {yz} }} + \frac{z}{{z + \sqrt {xz} + \sqrt {yz} }}\]

\[ = \frac{{\sqrt x }}{{\sqrt x + \sqrt y + \sqrt z }} + \frac{{\sqrt y }}{{\sqrt x + \sqrt y + \sqrt z }} + \frac{{\sqrt z }}{{\sqrt x + \sqrt y + \sqrt z }}\]

\[ = \frac{{\sqrt x + \sqrt y + \sqrt z }}{{\sqrt x + \sqrt y + \sqrt z }} = 1\].

Vậy \(\frac{x}{{x + \sqrt {3x + yz} }} + \frac{y}{{y + \sqrt {3y + zx} }} + \frac{z}{{z + \sqrt {3z + xy} }} \le 1\) (đpcm)

Câu hỏi cùng chủ đề

Xem tất cả