Cho x > 0, y > 0 thoả mãn: x^2 + 4y^2 = 6xy. Chứng minh rằng: 2log(x + 2y) = 1 + logx + logy
Bài 31 trang 39 SBT Toán 11 Tập 2: Cho x > 0, y > 0 thoả mãn: x2 + 4y2 = 6xy. Chứng minh rằng:
2log(x + 2y) = 1 + logx + logy.
Bài 31 trang 39 SBT Toán 11 Tập 2: Cho x > 0, y > 0 thoả mãn: x2 + 4y2 = 6xy. Chứng minh rằng:
2log(x + 2y) = 1 + logx + logy.
Với x > 0, y > 0 ta có:
x2 + 4y2 = 6xy ⇒ x2 + 4xy + 4y2 = 10xy
⇒ (x + 2y)2 = 10xy.
Suy ra: 2log(x + 2y) = log(x + 2y)2
= log(10xy) = log10 + logx + logy
= 1 + logx + logy.
Vậy 2log(x + 2y) = 1 + logx + logy.
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: