Cho tứ diện SABC. Gọi H, K lần lượt là hai điểm trên hai cạnh SA và SC (H ≠ S, A; K ≠ S, C) sao cho HK không song song với AC
5k
16/06/2023
Thực hành 8 trang 98 Toán 11 Tập 1: Cho tứ diện SABC. Gọi H, K lần lượt là hai điểm trên hai cạnh SA và SC (H ≠ S, A; K ≠ S, C) sao cho HK không song song với AC. Gọi I là trung điểm của BC (Hình 38).
a) Tìm giao điểm của đường thẳng HK và mặt phẳng (ABC).
b) Tìm giao tuyến của các mặt phẳng (SAI) và (ABK); (SAI) và (BCH).
Trả lời
a)
Xét mặt phẳng (SAC), có:
HK ∩ AC = {J}
Mà AC ⊂ (ABC)
Suy ra HK ∩ (ABC) = {J}.
b)
+) Ta có:
Gọi D là giao điểm của SI và BK
Ta có:
Do đó (SAI) ∩ (ABK) = AD.
+) Ta có:
Ta lại có:
Do đó (SAI) ∩ (BHC) = HI.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Hàm số liên tục
Bài tập cuối chương 3
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song