Cho tứ diện ABCD. Gọi E, F, G lần lượt là ba điểm trên ba cạnh AB, AC, BD sao cho EF cắt BC tại I (I ≠ C), EG cắt AD tại H (H ≠ D)

Bài 4 trang 99 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi E, F, G lần lượt là ba điểm trên ba cạnh AB, AC, BD sao cho EF cắt BC tại I (I ≠ C), EG cắt AD tại H (H ≠ D).

a) Tìm giao tuyến của các mặt phẳng (EFG) và (BCD), (EFG) và (ACD).

b) Chứng minh ba đường thẳng CD, IG, HF cùng đi qua một điểm.

Trả lời

Bài 4 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) +) Ta có: EF ∩ BC = {I}, EG ∩ BD = {G}

Mà EF, EG ⊂ (EGF) và BC, BD ⊂ (BCD)

Suy ra (EFG) ∩ (BCD) = {IG}.

+) Ta có: EF ∩ AC = {F}, EG ∩ AD = {H}

Mà EF, EG ⊂ (EGF) và AC, AD ⊂ (ACD)

Suy ra (EFG) ∩ (ACD) = {FH}.

b) Ta có: Bài 4 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Mà CD ⊂ (BCD)

Gọi J là giao điểm của IG và CD.

Ta lại có: Bài 4 trang 99 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

Mặt khác: (ACD) ∩ (EFG) = IG

Do đó J ∈ IG.

Vậy ba đường thẳng CD, IG, HF cùng đi qua điểm J.

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Hàm số liên tục

Bài tập cuối chương 3

Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Câu hỏi cùng chủ đề

Xem tất cả